[1]
Thierry Mickaël, Modelling of atmospheric carbonation of cement based materials considering the kinetic effects and modifications of the microstructure, PhD Thesis, L'école nationale des ponts et chausses, Paris, (2005).
Google Scholar
[2]
B. Johannesson, P. Utgenannt, Microstructutals changes caused by carbonation of cement mortar, Cement and concret research 31 (2001) 925-931.
DOI: 10.1016/s0008-8846(01)00498-7
Google Scholar
[3]
J.J. Thomas, J. Hsieh, H.M. Jennings, Effect of carbonation on the nitrogen BET surface area of hardened portland cement paste, Advanced cement based materials, Vol. 3 (1996) 76-80.
DOI: 10.1016/s1065-7355(96)90074-7
Google Scholar
[4]
R.L. Rarick, J.J. Thomas, B.J. Christensen, H.M. Jennings, Deterioration of the nitrogen BET surface area of dried cement paste with storage time, Advanced cement based materials, Vol. 3 (1996) 72-75.
DOI: 10.1016/s1065-7355(96)90073-5
Google Scholar
[5]
C.A.R. Da Silva, R.J.P. Reis, F.S. Lameiras, W.L. Vasconcelos, Carbonation-Related Microstructural Changes in Long-Term Durability Concrete, Materials Research, Vol. 5, No. 3 (2002) 287-293.
DOI: 10.1590/s1516-14392002000300012
Google Scholar
[6]
P. Chindaprasirt, S. Rukzon, Pore Structure Changes of Blended Cement Pastes Containing Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash Caused by Carbonation, Journal of materials in civil engineering (November 2009) 666-671.
DOI: 10.1061/(asce)0899-1561(2009)21:11(666)
Google Scholar
[7]
M. Arandigoyen, B. Bicer-Simsir, J.I. Alvarez, D.A. Lange, Variation of microstructure with carbonation in lime and blended pastes, Applied Surface Science 252 (2006) 7562-7571.
DOI: 10.1016/j.apsusc.2005.09.007
Google Scholar
[8]
S. Kim, S. Taguchi, Y. Ohba, T. Tsurumi, E. Sakai, M. Daimon, Carbonation reaction of calcium hydroxide and calcium silicate hydrates, Journal of the Society of Inorganic materials, Vol. 2, No. 254 (1995) 18-25.
Google Scholar
[9]
Qi Zhang, Guang Ye, Eduard Koenders, Investigation of the structure of heated Portland cement paste by using various techniques, Construction and Building Materials 38 (2013) 1040–1050.
DOI: 10.1016/j.conbuildmat.2012.09.071
Google Scholar
[10]
N. Hiromitu, H. Masako, Analysis of adsorption isotherms of water vapour for nonporous and porous adsorbents, Journal of Colloid and Interface Science, Vol. 145, No. 2 (September 1991) 405-412.
DOI: 10.1016/0021-9797(91)90371-e
Google Scholar
[11]
S. Brunauer, P. H. Emmett and E. Teller, Adsorption of gases in multimolecular layers, Journal of American Chemical Society, 60 (1938) 309-319.
DOI: 10.1021/ja01269a023
Google Scholar
[12]
Th.A. Bier, J. Kropp, H.K. Hilsdorf, Carbonation and realkalinization of concrete and hydrated cement paste, in: J.C. MASO, editor, Durability of construction materials, volume 3. RILEM, Chapman & Hall Publishers, London-New York, 1987, pp.927-934.
Google Scholar
[13]
Parrott, L., Moisture conditioning and transport properties of concrete test specimens, Materials and Structure, 27 (1944) 460-468.
DOI: 10.1007/bf02473450
Google Scholar
[14]
N. De Belie, J. Kratky, S. Van Vlierberghe, Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations, Cement and Concrete Research, Vol. 40, Issue 12 (2010).
DOI: 10.1016/j.cemconres.2010.08.014
Google Scholar
[15]
Wilhelm Eitel, Silicate science: Ceramics and hydraulic binders, volume V, Academic press, New York, (1966).
Google Scholar
[16]
E.G. Swenson, P.J. Sereda, Mechanism of the carbonation shrinkage of lime and hydrated cement, Journal of Applied Chemistry, Vol. 18, Issue 4 (April 1968) 111-117.
DOI: 10.1002/jctb.5010180404
Google Scholar
[17]
Christophe Carde, La carbonatation, Le magazine Béton[s], 2 (2006) 53-54.
Google Scholar