[1]
P. Posi, C. Teerachanwit, C. Tanutonga, S. Limkamoltipa, S. Lertnimoolchai, V. Sata, P. Chindaprasirt, Lightweight geopolymer concrete containing aggregate from recycle lightweight block, Mater. Design. 52(0) (2013) 580-586.
DOI: 10.1016/j.matdes.2013.06.001
Google Scholar
[2]
Y. Xu, L. Jiang, J. Xu, Y. Li, Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick, Constr. Build. Mater. 27(1) (2012) 32-38.
DOI: 10.1016/j.conbuildmat.2011.08.030
Google Scholar
[3]
S. Akcaozoglu, CD. Atis, K. Akcaozoglu, An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete, Waste. Manage. 30 (2010) 285-90.
DOI: 10.1016/j.wasman.2009.09.033
Google Scholar
[4]
E. Yasar, CD. Atis, A. Kilic, H. Gulsen, Strength properties of lightweight concrete made with basaltic pumice and fly ash, Mater. Lett. 57(15) (2003) 2267-70.
DOI: 10.1016/s0167-577x(03)00146-0
Google Scholar
[5]
OA. Duzgun, R. Gul, AC. Aydin, Effect of steel fibers on the mechanical properties of natural lightweight aggregate concrete, Mater. Lett. 59 (2005) 3357-63.
DOI: 10.1016/j.matlet.2005.05.071
Google Scholar
[6]
S. Akcaozoglu, K. Akcaozoglu, CD. Atis, Thermal conductivity, compressive strength and ultrasonic wave velocity of cementitious composite containing waste PET lightweight aggregate (WPLA), Compos. Part. B-Eng, 45(1) (2013) 721-726.
DOI: 10.1016/j.compositesb.2012.09.012
Google Scholar
[7]
K. Hannawi, S. Kamali-Bernard, W. Prince, Physical and mechanical properties of mortars containing PET and PC waste aggregates, Waste. Manage. 30(11) (2010) 2312-20.
DOI: 10.1016/j.wasman.2010.03.028
Google Scholar
[8]
TR. Naik, SS. Singh, CO. Huber, BS. Brodersen, Use of post-consumer waste plastics in cement based composites, Cement. Concrete. Res. 26 (1996) 1489-1492.
DOI: 10.1016/0008-8846(96)00135-4
Google Scholar
[9]
ZZ. Ismail, EA. Al-Hashmi, Use of waste plastic in concrete mixture as aggregate replacement, Waste. Manage. 28(11) (2008) 2041-7.
DOI: 10.1016/j.wasman.2007.08.023
Google Scholar
[10]
A. Kan, R. Demirboga, A novel material for lightweight concrete production, Cement. Concrete. Comp. 31(7) (2009) 489-95.
DOI: 10.1016/j.cemconcomp.2009.05.002
Google Scholar
[11]
BW. Jo, SK. Park, JC. Park, Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates, Constr. Build. Mater. 22(12) (2008) 2281-91.
DOI: 10.1016/j.conbuildmat.2007.10.009
Google Scholar
[12]
KS. Rebeiz, AP. Craft, Plastic waste management in construction: technological and institutional issues, Conserv. Recycling. 15 (1995) 245-257.
DOI: 10.1016/0921-3449(95)00034-8
Google Scholar
[13]
PRL. Lima, MB. Leite, EQR. Santiago, Recycled lightweight concrete made from footwear industry waste and CDW, Waste Manage. 30(6) (2010) 1107-13.
DOI: 10.1016/j.wasman.2010.02.007
Google Scholar
[14]
RILEM, Recommendation: Classification fonctionnelle des betons/Functional classification of lightweight concretes, Mater Struct. 11(64) (1978) 281–282.
Google Scholar
[15]
O. Erdogan, O. Ahmet, B. Adil, O. Hakan, Investigating mix proportions of high strength self compacting concrete by using Taguchi method, Constr. Build. Mater. 23 (2009) 694-702.
DOI: 10.1016/j.conbuildmat.2008.02.014
Google Scholar
[16]
GS. Peace, Taguchi Methods: A Hands-On Approch. Massachusetts, Corporate & Profession Publishing Group, (1993).
Google Scholar
[17]
American Society for Testing and Materials, 2006. ASTM C138 Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. Annual Book of ASTM Standards. Vol. 04. 02.
DOI: 10.1520/c0138_c0138m-13
Google Scholar
[18]
X. H. Vu, Y. Malecot, L. Daudeville, E. Buzaud, Effect of the water/cement ratio on concrete behavior under extreme loading, Int. J. Numer. Anal. Meth. 33 (2009) 1867-1888.
DOI: 10.1002/nag.796
Google Scholar