[1]
J. K. Wight and J. G. MacGregor, Reinforced concrete: mechanics and design. 6th Edition, Pearson Education, Inc., New Jersey, USA, (2012).
Google Scholar
[2]
ACI Committee 318 (2008), Building code requirements for structural concrete (ACI 318-08) and commentary. Detroit: American Concrete Institute, (2008).
DOI: 10.1201/9781420007657.ch36
Google Scholar
[3]
AASHTO (2008), AASHTO LRFD Bridge design specifications. 4th Edition—2008 Interim Revisions. Washington, DC, (2008).
DOI: 10.1061/41016(314)11
Google Scholar
[4]
F. J. Vecchio and M. P. Collins, The modified compression-field theory for reinforced concrete elements subjected to shear, ACI J., 83 (1986) 219–231.
DOI: 10.14359/10416
Google Scholar
[5]
W. B. Warwick and S. J. Foster, Investigation into the Efficiency Factor Used in non-Flexural Reinforced Concrete Member Design,: UNICIV Report No. R-320, University of New South Wales, Kensington, Australia, (1993).
Google Scholar
[6]
L. X. Zhang and T.T.C. Hsu, Behavior and analysis of 100 MPa concrete membrane elements, J. Struct. Eng., ASCE, 124 (1998) 24-34.
DOI: 10.1061/(asce)0733-9445(1998)124:1(24)
Google Scholar
[7]
W. Kaufmann, P. Marti, Structural Concrete: Cracked Membrane Model, J. Struct. Eng., ASCE, 124 (1998) 1467-1475.
DOI: 10.1061/(asce)0733-9445(1998)124:12(1467)
Google Scholar
[8]
D. Zwicky, T. Vogel, Critical inclination of compression struts in concrete beams, J. Struct. Eng., ASCE, 132 (2006) 686-693.
DOI: 10.1061/(asce)0733-9445(2006)132:5(686)
Google Scholar
[9]
S.J. Foster, A.R. Malik, Evaluation of efficiency factor models used in strut-and-tie modeling of nonflexural members, J. Struct. Eng., ASCE, 128 (2002) 569-577.
DOI: 10.1061/(asce)0733-9445(2002)128:5(569)
Google Scholar
[10]
P. Gardoni, A. Der Kiureghian, and K. M. Mosalam, Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations, J. Eng. Mech., ASCE, 128 (2002) 1024-1038.
DOI: 10.1061/(asce)0733-9399(2002)128:10(1024)
Google Scholar
[11]
J. Kim, J. M. LaFave, and J. Joint shear behavior of RC beam-column connections, Mag. Concr. Res., 61 (2009) 119-132.
Google Scholar
[12]
J. Song, W. -H. Kang, K. S. Kim, and S. Jung, Probabilistic shear strength models for reinforced concrete beams without shear reinforcement, Struct. Eng. Mech., 34 (2010) 15-38.
DOI: 10.12989/sem.2010.34.1.015
Google Scholar
[13]
S. J. Hwang, W. Y. Lu, and H. J. Lee, Shear strength prediction for deep beams, ACI Struct. J., 97 (2000) 367-376.
Google Scholar
[14]
S. J. Hwang, W. Y. Lu, and H. J. Lee, Shear strength prediction for reinforced concrete corbels, ACI Struct. J., 97(2000) 543-552.
DOI: 10.14359/7419
Google Scholar
[15]
P. Chetchotisak, J. Teerawong, S. Yindeesuk and J. Song, New Strut-and-Tie-Models for Shear Strength Prediction and Design of RC Deep Beams, Computers and Concrete (Submitted).
DOI: 10.12989/cac.2014.14.1.019
Google Scholar
[16]
G. E. P. Box, G.C. Tiao, Bayesian inference in statistic analysis, Addison-Wesley, MA, (1992).
Google Scholar
[17]
J. W. Park and D. Kuchma, Strut-and-tie model analysis for strength prediction of deep beams, ACI Struct. J., 104 (2007) 657-666.
DOI: 10.14359/18947
Google Scholar
[18]
A. Arabzadeh, A. R. Rahaie, and R. Aghayari, A Simple Strut-and-Tie Model for Prediction of Ultimate Shear Strength of RC Deep Beams. Int. J. of Civil Eng., 7 (2009) 141-153.
DOI: 10.14359/51688011
Google Scholar
[19]
M. D. Brown, C. L. Sankovich, O. Bayrak, and J. O. Jirsa, Behavior and Efficiency of Bottle-Shaped Struts, ACI Struct. J., V. 103 (2006) 348-355.
Google Scholar
[20]
M. Pal and S. Deswal, Support Vector Regression Based Shear Strength Modelling of Deep Beams. Comp & Struct. 89 (2011) 1430–1439.
DOI: 10.1016/j.compstruc.2011.03.005
Google Scholar