Joule Heating and Peltier Effects in Thermoelectric Spin-Transfer Torque Mram Devices Using Finite Element Modeling

Article Preview

Abstract:

This paper reports the Joule heating and Peltier effects in thermoelectric spin-transfer torque MRAMs (TSTT-MRAMs). The simulation was undertaken based on the current-induced magnetization switching at the MgO/CoFe magnetic tunnel junction. Thermal and heat flux distributions of the TSTT-MRAM cells were simulated and analyzed using finite-element modeling. The Joule heating and Peltier effects lead to the increases in the temperature and heat flux distributions at the magnetic tunnel junction (MTJ) as well as the thermoelectric module. The maximum temperature of Peltier effect is higher than Joule heating effect when voltage amplitude below 0.77V. Some practical data for the STT-MRAM were also reported.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

989-993

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. H. Lee, S. H. Lim, Increase of temperature due to Joule heating during current-induced magnetization switching of an MgO-based magnetic tunnel junction, Phys. Rev. Lett., vol. 92, p.233502, (2008).

DOI: 10.1063/1.2943151

Google Scholar

[2] J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Mater, vol. 159, p. L1–L7, (1996).

DOI: 10.1016/0304-8853(96)00062-5

Google Scholar

[3] L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, vol. 54, p.9353–9358, (1996).

DOI: 10.1103/physrevb.54.9353

Google Scholar

[4] C. Augustine, N.N. Mojumder, X. Fong, S.H. Choday, S.P. Park, K. Roy, Spin-transfer torque mrams for low power memories: perspective and prospective, IEEE Sensors Journal, vol. 12, no. 4, (2012).

DOI: 10.1109/jsen.2011.2124453

Google Scholar

[5] S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, H. Ohno, Magnetic tunnel junctions for spintronic memories and beyond, IEEE Trans. Electron Devices, vol. 54, p.991, (2007).

DOI: 10.1109/ted.2007.894617

Google Scholar

[6] E. Chen, D. Apalkov, A. Driskill-Smith, A. Khvalkovskiy, D. Lottis, K. Moon, V. Nikitin, A. Ong, X. Tang , S. Watts , R. Kawakami , M. Krounbi , S.A. Wolf , S. J. Poon , J.W. Lu , A.W. Ghosh, M. Stan, W. Butler, T. Mewes, S. Gupta, C.K. A. Mewes, P.B. Visscher, and R.A. Lukaszew. Progress and prospects of spin transfer torque random access memory, IEEE Trans. Mag., vol. 48, no. 11, (2012).

DOI: 10.1109/tmag.2012.2198451

Google Scholar

[7] S. Chatterjee, S. Salahuddin, S. Kumar, S. Mukhopadhyay, Impact of Self-Heating on Reliability of a spin-torque-transfer RAM Cell. IEEE Trans. Electron Devices, vol. 59, no. 3, (2012).

DOI: 10.1109/ted.2011.2180726

Google Scholar

[8] N.N. Mojumder, D.W. Abraham, K. Roy, D.C. Worledge, Magnonic spin-transfer torque MRAM with low power, high speed, and error-free switching, IEEE Trans. Mag., vol. 48, no. 6, (2012).

DOI: 10.1109/tmag.2011.2179982

Google Scholar

[9] J. C. Slonczewski, Initiation of spin-transfer torque by thermal transport from magnons , Phys. Rev. B, vol. 82, p.054403, (2010).

DOI: 10.1103/physrevb.82.054403

Google Scholar

[10] N.N. Mojumder, D.W. Abraham, K. Roy, D.C. Worledge, Thermoelectric spin-transfer torque MRAM with fast bidirectional writing using magnonic current, IEEE Trans. Mag., vol. 49, no. 1, (2013).

DOI: 10.1109/tmag.2012.2205400

Google Scholar

[11] S.S. Ha, K.J. Lee, C.Y. You, Effect of the resistance-area product on the temperature increase of nanopillars for spin torque magnetic memory, Curr. Appl. Phys. vol. 10, pp.659-663, (2010).

DOI: 10.1016/j.cap.2009.08.013

Google Scholar

[12] G. Chen, Particularities of heat conduction in nanostructures, JNR., vol. 2, p.199–204, (2000).

Google Scholar

[13] J. Lee, M. Asheghi, K.E. Goodson, Impact of thermoelectric phenomena on phase-change memory performance metrics and scaling, Nanotechnology. vol. 23, pp.1-7, (2012).

DOI: 10.1088/0957-4484/23/20/205201

Google Scholar