Low-Temperature Sintering and Microwave Dielectric Properties of CaWO4-Mg2SiO4 Ceramics

Article Preview

Abstract:

The effect of V2O5 addition on the microstructures and the microwave dielectric properties of 0.9CaWO4-0.1Mg2SiO4(9CWMS) ceramics prepared by conventional solid-state routes have been investigated. The V2O5 were selected as liquid phase sintering aids to lower the sintering temperature of 9CWMS ceramics. A small amount of V2O5 (0.25~1 wt%) were used for sintering aid and led to high densification at 1050°C. The dielectric properties of 9CWMS ceramics with V2O5 additions are strongly dependent on the densification, the microstructure. As the amount of V2O5 additives increased from 0.25 to 1.0 wt%, the dielectric constantsεrdecreased following the trend with density. The quality values Qdecreased with the increase of V2O5 amount for all sintering temperatures. The 0.25 wt% V2O5-doped 0.9CaWO4-0.1Mg2SiO4 ceramicssintered at 1080°C for 2 h had the optimum dielectric properties: εr= 5.7; Q×f= 73000 (at 14 GHz).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-16

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Wakino: Ferroelectrics, 91 (1989) 68.

Google Scholar

[2] K. Pobl and G. Wolfram: Siemens-Components 17 (1982) 14.

Google Scholar

[3] S. Nomura: Ferroelectrics, 49 (1983) 61.

Google Scholar

[4] H. M. O'Bryan. J. Thomson. Jr. and J. K. Plourde: J. Am. Ceram. Soc., 57 (1974) 450.

Google Scholar

[5] K. Wakino, K. Minai and H. Tamura: J. Am. Ceram. Soc., 67 (1984) 278.

Google Scholar

[6] K. Fukada, I. Fujii, Y. Cho and I. Awai: Jpn. J. Appl. Phys., 32 (1993) 1712.

Google Scholar

[7] S. Nomura, K. Toyama and K. Kaneta: Jpn. J. Appl. Phys., 21 (1982) L624.

Google Scholar

[8] G. Wolfram and H.E. G bel: Mater. Res. Bull., 16 (1981) 1455.

Google Scholar

[9] A. koller, Structure and Properties of Ceramics, Elsevier, Tokyo, (1994).

Google Scholar

[10] H. D. Megaw, Crystal Structure: A Working Approach, W.B. Saunders Co., London, 1973 p.249.

Google Scholar

[11] B. S. Kim and K. Y. Kim Jpn. J. Appl. Phys., 40 (2001), 4956.

Google Scholar

[12] W. C. Tzou, C. F. Yung, Y. C. Chen and P. S. Cheng, J. Euro. Ceram. Soc., 40 (2001)698.

Google Scholar

[13] H. L. Chen and C. L. Pan, Jpn. J. Appl. Phys., 41 (2002)707.

Google Scholar

[14] B. W. Hakki and P. D. Coleman, IEEE Trans. Microwave Theory & Tech., 8 (1960) 402.

Google Scholar

[15] W. E. Courtney, IEEE Trans. Microwave Theory & Tech., 18 (1970) 476.

Google Scholar

[16] F. Cambier, C. Leblud and M. R. Anseau, Ceramic International, 8 (1982) 77.

Google Scholar

[17] B.D. Silverman, Phys Rev., 125 (1962) (1921).

Google Scholar

[18] W. S. Kim, T. H. Hong, E. S Kim and K. H. Yoon: Jpn. J. Appl. Phys., 37 (1998) 5466.

Google Scholar