[1]
L. Kaufmann and P. Rousseeuw. Clustering by means of medoids. Elsevier Science, pages 405–416, (1987).
Google Scholar
[2]
M.R. Anderberg. Cluster Analysis for Applications. Academic Press, Inc., New York, NY, (1973).
Google Scholar
[3]
L. Kaufmann and P. Rousseeuw. Finding Groups in Data: An introduction.
Google Scholar
[4]
R. Ng and J. Hahn. Efficient and Effective Clustering Methods for Spatial Data Mining. (1994).
Google Scholar
[5]
Miron Livny Zhang, Miron@cs. Wisc. Edu, Tian Zhang, Tian Zhang, Raghu Ramakrishnan, Raghu Ramakrishna, and Miron Livny. BIRCH: A new data clustering algorithm and its applications. Data Mining and Knowledge Discovery, 1: 141–182, (1997).
DOI: 10.1023/a:1009783824328
Google Scholar
[6]
S. Guha, R. Rastogi, and K. Shim. CURE: An Efficient clustering algorithm for large databases. In Proc. SIG-MOD, pages 73-84, (1998).
DOI: 10.1145/276305.276312
Google Scholar
[7]
S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams. In Proceedings of the Annual Symposium on Foundations of Computer Science. IEEE, November (2000).
DOI: 10.1109/sfcs.2000.892124
Google Scholar
[8]
S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan, Clustering Data Streams: Theory and Practice TKDE special issue on clustering, vol. 15, (2003).
DOI: 10.1109/tkde.2003.1198387
Google Scholar
[9]
B. Babcock, M. Datar, R. Motwani, L. O'Callaghan: Maintaining Variance and k-Medians over Data Stream Windows, Proceedings of the 22nd Symposium on Principles of Database Systems, (2003).
DOI: 10.1145/773153.773176
Google Scholar
[10]
M. Charikar, L. O'Callaghan, and R. Panigrahy. Better streaming algorithms for clustering problems In Proc. of 35th ACM Symposium on Theory of Computing, (2003).
DOI: 10.1145/780542.780548
Google Scholar
[11]
[P. Domingos and G. Hulten. Mining High-Speed Data Streams. In Proceedings of the Association for Computing Machinery Sixth International Conference on Knowledge Discovery and Data Mining, (2000).
DOI: 10.1145/347090.347107
Google Scholar
[12]
P. Domingos and G. Hulten, A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering, Proceedings of the Eighteenth International Conference on Machine Learning, 2001, Williamstown, MA, Morgan Kaufmann.
Google Scholar
[13]
G. Hulten, L. Spencer, and P. Domingos. Mining Time-Changing Data Streams. ACM SIGKDD (2001).
DOI: 10.1145/502512.502529
Google Scholar
[14]
C. Ordonez. Clustering Binary Data Streams with K-means ACM DMKD (2003).
Google Scholar
[15]
L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-data algorithms for highquality clustering. Proceedings of IEEE International Conference on Data Engineering, March (2002).
DOI: 10.1109/icde.2002.994785
Google Scholar
[16]
C. Aggarwal, J. Han, J. Wang, P. S. Yu, A Framework for Clustering Evolving Data Streams, Proc. 2003 Int. Conf. on Very Large Data Bases, Berlin, Germany, Sept. (2003).
Google Scholar
[17]
C. Aggarwal, J. Han, J. Wang, and P. S. Yu, A Framework for Projected Clustering of High Dimensional Data Streams, Proc. 2004 Int. Conf. on Very Large Data Bases, Toronto, Canada, (2004).
DOI: 10.1016/b978-012088469-8.50075-9
Google Scholar
[18]
E. Keogh, J. Lin, and W. Truppel. Clustering of Time Series Subsequences is Meaningless: Implications for Past and Future Research. In proceedings of the 3rd IEEE International Conference on Data Mining. Melbourne, FL. Nov 19-22, (2003).
DOI: 10.1109/icdm.2003.1250910
Google Scholar
[19]
Gaber, M, M., Krishnaswamy, S., and Zaslavsky, A., On-board Mining of Data Streams in Sensor Networks, Accepted as a chapter in the forthcoming book Advanced Methods of Knowledge Discovery from Complex Data, (Eds. ) Sanghamitra Badhyopadhyay, Ujjwal Maulik, Lawrence Holder and Diane Cook, Springer Verlag, to appear.
DOI: 10.1007/1-84628-284-5_12
Google Scholar
[20]
B.R. Dai, J.W. Huang, M.Y. Yeh, and M.S. Chen. Adapative clustering for multiple evolving streams. IEEE Transaction On Knowledge and data engineering, 18(9), (2006).
Google Scholar