Plasticization of Cellulose Diacetate by Ionic Liquid

Article Preview

Abstract:

Three ionic liquids, 1-butyl-3-methylimidazolium terafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMOTF) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) were applied as the plasticizers of CDA. Among three ILs, BMIMBF4 was considered to be the most effective plasticizer, which was confirmed by TGA and DMA. The interaction between ILs and CDA was also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1002-1006

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.S. Kim, J.P. Kim, S.Y. Kwak, et al, Novel regenerated cellulosic material prepared by an environmentally-friendly process, Polymer. 2006 (47) 1333-1339.

DOI: 10.1016/j.polymer.2005.12.070

Google Scholar

[2] Q. Chen, S. Nattatan, X. Y. Ni, et al, The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites, Carbohydrate Polymers. 2008 (71) 458-467.

DOI: 10.1016/j.carbpol.2007.06.019

Google Scholar

[3] Y.B. Song, J.P. Zhou, L.N. Zhang, et al, Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions, Carbohydrate Polymers. 2008 (73) 18-25.

DOI: 10.1016/j.carbpol.2007.10.018

Google Scholar

[4] J. Schroeter, F. Felix, Melting cellulose, Cellulose. 2005 (12) 159-165.

DOI: 10.1007/s10570-004-0344-3

Google Scholar

[5] H.P. Fink, P. Weigel, H.J. Purz, et al, Structure formation of regenerated cellulose materials from NMMO-solutions, Progress in Polymer Science. 2001 (26) 1473-1524.

DOI: 10.1016/s0079-6700(01)00025-9

Google Scholar

[6] P. Zugenmaier, Conformation and packing of various crystalline cellulose fibers, Progress in Polymer Science. 2001 (26) 1341-1417.

DOI: 10.1016/s0079-6700(01)00019-3

Google Scholar

[7] X.M. Chen, C. Burger, D.F. Fang, et al, X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions, Polymer. 2006 (47) 2839-2848.

DOI: 10.1016/j.polymer.2006.02.044

Google Scholar

[8] T. Heinze, New ionic polymers by cellulose functionalization, Macromolecular Chemistry and Physics. 1998 (199) 2341-2364.

DOI: 10.1002/(sici)1521-3935(19981101)199:11<2341::aid-macp2341>3.0.co;2-j

Google Scholar

[9] T. Heinze, T. Liebert, P. Klüfers, et al, Carboxymethylation of cellulose in unconventional media, Cellulose. 1999 (6) 153-165.

DOI: 10.1023/a:1009271427760

Google Scholar

[10] T. Heinze, T. Liebert, Chemical characteristics of cellulose acetate, Macromolecular symposia. 2004 (208) 167-237.

DOI: 10.1002/masy.200450408

Google Scholar

[11] P. Zugenmaier, Characterization and physical properties of cellulose acetates, Macromolecular symposia. 2004 (208) 81-166.

DOI: 10.1002/masy.200450407

Google Scholar

[12] V.E. Yarsley, W. Flavell, P.S. Adamson, N.G. Perkins, Cellulosic plastics; cellulose acetate; cellulose ethers; regenerated cellulose; cellulose nitrate. London, (1964).

Google Scholar

[13] C.R. Fordyce, L.W.A. Meyer, Plasticizers for cellulose acetate and cellulose acetate butyrute, Industrial and Engineering Chemistry. 1940 (32) 1053-1060.

DOI: 10.1021/ie50368a009

Google Scholar

[14] S.H. Lee, N. Shiraishi, Plasticization of cellulose diacetate by reaction with maleic anhydride, glycerol, and citrate esters during melt processing, J. Appl. Polym. Sci. 2001 (81) 243-50.

DOI: 10.1002/app.1435

Google Scholar

[15] M. Yoshioka, N. Hagiwara, N. Shiraishi, Thermoplasticization of cellulose acetates by grafting of cyclic esters, Cellulose. 1999 (6) 193-212.

Google Scholar

[16] H. Hatakeyama, T. Yoshida, T. Hatakeyama, The effect of side chain association on thermal and viscoelastic properties. Cellulose acetate based polycaprolactones, J. Thermal. Anal. 2000 (59) 157-68.

DOI: 10.1533/9781845698546.327

Google Scholar

[17] K.H. Guruprasad, G.M. Shashidhara, Grafting, blending, and biodegradability of cellulose acetate, J. Appl. Polym. Sci. 2004 (91) 1716-23.

DOI: 10.1002/app.13386

Google Scholar

[18] H. Warth, R. Mülhaupt, J Schätzle, Thermoplastic cellulose acetate and cellulose acetate compounds prepared by reactive processing, J. Appl. Polym. Sci. 1997 (64) 231-42.

DOI: 10.1002/(sici)1097-4628(19970411)64:2<231::aid-app4>3.0.co;2-s

Google Scholar

[19] H. VazquezTorres, C.A. Cruzramos, Blends of cellulosic esters with poly(caprolactone)-characterization by DSC, DMA, and WAXS, J. Appl. Polym. Sci. 1994 (8) 1141-1159.

DOI: 10.1002/app.1994.070540818

Google Scholar

[20] Aranishi Y, Yamada H, Maeda Y, Takahashi H, Ozaki M, Nishio Y, Yoshioka M. Thernoplastic Cellulose Derivative Composition and Fiber Comprising the same. U.S. Patent 6, 984, 631. (2006).

Google Scholar

[21] M. Yoshioka, T. Miyazaki, N. Shiraishi, Plasticization of Cellulose Derivatives by Reactive Plasticizers. 1. Plasticization of Cellulose Acetate by Kneading Reaction using Dibasic Acid Anhydrides and Monoepoxides, Mokuzai Gakkaishi, 1996(4) 406-416.

DOI: 10.1007/bf00779549

Google Scholar

[22] R. P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of Cellulose with Ionic Liquids. J. Ameri. Chemi. Socie. 2002 (1) 4974-4976.

Google Scholar

[23] H. Zhang, J. Wu, J. Zhang, J. He, 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose, Macromolecules. 2005 (38) 8272-8277.

DOI: 10.1021/ma0505676

Google Scholar

[24] M.P. Scott, C.S. Brazel, M.G. Benton, et al, Application of ionic liquids as plasticizers for poly(methyl methacrylate), Chemical Communications. 2002 (2) 1370-1371.

DOI: 10.1039/b204316p

Google Scholar

[25] Y.L. Guo, P.Y. Wu, Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy, Carbohydrate Polymers. 2008 (74) 509-513.

DOI: 10.1016/j.carbpol.2008.04.005

Google Scholar

[26] J.M. Andanson, F. Jutz, A. Bailer, Investigation of Binary and Ternary Systems of Ionic Liquids with Water and/or Supercritical CO2 by in Situ Attenuated Total Reflection Infrared Spectroscopy, Journal of Polymer Science Part B: Polymer Physics. 2010 (6) 2111-2117.

DOI: 10.1021/jp911403s

Google Scholar