[1]
I.S. Kim, J.P. Kim, S.Y. Kwak, et al, Novel regenerated cellulosic material prepared by an environmentally-friendly process, Polymer. 2006 (47) 1333-1339.
DOI: 10.1016/j.polymer.2005.12.070
Google Scholar
[2]
Q. Chen, S. Nattatan, X. Y. Ni, et al, The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites, Carbohydrate Polymers. 2008 (71) 458-467.
DOI: 10.1016/j.carbpol.2007.06.019
Google Scholar
[3]
Y.B. Song, J.P. Zhou, L.N. Zhang, et al, Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions, Carbohydrate Polymers. 2008 (73) 18-25.
DOI: 10.1016/j.carbpol.2007.10.018
Google Scholar
[4]
J. Schroeter, F. Felix, Melting cellulose, Cellulose. 2005 (12) 159-165.
DOI: 10.1007/s10570-004-0344-3
Google Scholar
[5]
H.P. Fink, P. Weigel, H.J. Purz, et al, Structure formation of regenerated cellulose materials from NMMO-solutions, Progress in Polymer Science. 2001 (26) 1473-1524.
DOI: 10.1016/s0079-6700(01)00025-9
Google Scholar
[6]
P. Zugenmaier, Conformation and packing of various crystalline cellulose fibers, Progress in Polymer Science. 2001 (26) 1341-1417.
DOI: 10.1016/s0079-6700(01)00019-3
Google Scholar
[7]
X.M. Chen, C. Burger, D.F. Fang, et al, X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions, Polymer. 2006 (47) 2839-2848.
DOI: 10.1016/j.polymer.2006.02.044
Google Scholar
[8]
T. Heinze, New ionic polymers by cellulose functionalization, Macromolecular Chemistry and Physics. 1998 (199) 2341-2364.
DOI: 10.1002/(sici)1521-3935(19981101)199:11<2341::aid-macp2341>3.0.co;2-j
Google Scholar
[9]
T. Heinze, T. Liebert, P. Klüfers, et al, Carboxymethylation of cellulose in unconventional media, Cellulose. 1999 (6) 153-165.
DOI: 10.1023/a:1009271427760
Google Scholar
[10]
T. Heinze, T. Liebert, Chemical characteristics of cellulose acetate, Macromolecular symposia. 2004 (208) 167-237.
DOI: 10.1002/masy.200450408
Google Scholar
[11]
P. Zugenmaier, Characterization and physical properties of cellulose acetates, Macromolecular symposia. 2004 (208) 81-166.
DOI: 10.1002/masy.200450407
Google Scholar
[12]
V.E. Yarsley, W. Flavell, P.S. Adamson, N.G. Perkins, Cellulosic plastics; cellulose acetate; cellulose ethers; regenerated cellulose; cellulose nitrate. London, (1964).
Google Scholar
[13]
C.R. Fordyce, L.W.A. Meyer, Plasticizers for cellulose acetate and cellulose acetate butyrute, Industrial and Engineering Chemistry. 1940 (32) 1053-1060.
DOI: 10.1021/ie50368a009
Google Scholar
[14]
S.H. Lee, N. Shiraishi, Plasticization of cellulose diacetate by reaction with maleic anhydride, glycerol, and citrate esters during melt processing, J. Appl. Polym. Sci. 2001 (81) 243-50.
DOI: 10.1002/app.1435
Google Scholar
[15]
M. Yoshioka, N. Hagiwara, N. Shiraishi, Thermoplasticization of cellulose acetates by grafting of cyclic esters, Cellulose. 1999 (6) 193-212.
Google Scholar
[16]
H. Hatakeyama, T. Yoshida, T. Hatakeyama, The effect of side chain association on thermal and viscoelastic properties. Cellulose acetate based polycaprolactones, J. Thermal. Anal. 2000 (59) 157-68.
DOI: 10.1533/9781845698546.327
Google Scholar
[17]
K.H. Guruprasad, G.M. Shashidhara, Grafting, blending, and biodegradability of cellulose acetate, J. Appl. Polym. Sci. 2004 (91) 1716-23.
DOI: 10.1002/app.13386
Google Scholar
[18]
H. Warth, R. Mülhaupt, J Schätzle, Thermoplastic cellulose acetate and cellulose acetate compounds prepared by reactive processing, J. Appl. Polym. Sci. 1997 (64) 231-42.
DOI: 10.1002/(sici)1097-4628(19970411)64:2<231::aid-app4>3.0.co;2-s
Google Scholar
[19]
H. VazquezTorres, C.A. Cruzramos, Blends of cellulosic esters with poly(caprolactone)-characterization by DSC, DMA, and WAXS, J. Appl. Polym. Sci. 1994 (8) 1141-1159.
DOI: 10.1002/app.1994.070540818
Google Scholar
[20]
Aranishi Y, Yamada H, Maeda Y, Takahashi H, Ozaki M, Nishio Y, Yoshioka M. Thernoplastic Cellulose Derivative Composition and Fiber Comprising the same. U.S. Patent 6, 984, 631. (2006).
Google Scholar
[21]
M. Yoshioka, T. Miyazaki, N. Shiraishi, Plasticization of Cellulose Derivatives by Reactive Plasticizers. 1. Plasticization of Cellulose Acetate by Kneading Reaction using Dibasic Acid Anhydrides and Monoepoxides, Mokuzai Gakkaishi, 1996(4) 406-416.
DOI: 10.1007/bf00779549
Google Scholar
[22]
R. P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of Cellulose with Ionic Liquids. J. Ameri. Chemi. Socie. 2002 (1) 4974-4976.
Google Scholar
[23]
H. Zhang, J. Wu, J. Zhang, J. He, 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose, Macromolecules. 2005 (38) 8272-8277.
DOI: 10.1021/ma0505676
Google Scholar
[24]
M.P. Scott, C.S. Brazel, M.G. Benton, et al, Application of ionic liquids as plasticizers for poly(methyl methacrylate), Chemical Communications. 2002 (2) 1370-1371.
DOI: 10.1039/b204316p
Google Scholar
[25]
Y.L. Guo, P.Y. Wu, Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy, Carbohydrate Polymers. 2008 (74) 509-513.
DOI: 10.1016/j.carbpol.2008.04.005
Google Scholar
[26]
J.M. Andanson, F. Jutz, A. Bailer, Investigation of Binary and Ternary Systems of Ionic Liquids with Water and/or Supercritical CO2 by in Situ Attenuated Total Reflection Infrared Spectroscopy, Journal of Polymer Science Part B: Polymer Physics. 2010 (6) 2111-2117.
DOI: 10.1021/jp911403s
Google Scholar