[1]
F. Zhou, C. -M. Suh, S. -S. Kim, and R. -I. Murakami, Sliding-Wear Behavior of TiN- and CrN-Coated 2024 Aluminum Alloy Against an Al2O3 Ball. Tribology Letters 13, (2002) 173-178.
Google Scholar
[2]
F. Zhou, C. -M. Suh, S. -S. Kim, and R. -I. Murakami, Tribological behavior of CrN coating on aluminum alloys deposited by arc ion plating. Journal of Materials Research 17, (2011) 3133-3138.
DOI: 10.1557/jmr.2002.0453
Google Scholar
[3]
W.J. Liang, P.A. Rometsch, L.F. Cao, N. Birbilis, General aspects related to corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu, Corrosion Science 76, (2013) 119-128.
DOI: 10.1016/j.corsci.2013.06.035
Google Scholar
[4]
Metals Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International 2 (10) (1990).
DOI: 10.31399/asm.hb.v02.9781627081627
Google Scholar
[5]
J. A. Araújo, & D. Nowell, The effect of rapidly varying contact stress fields on fretting fatigue, International Journal of Fatigue 24 (7), (2002) 763-775.
DOI: 10.1016/s0142-1123(01)00191-8
Google Scholar
[6]
A.A. Fadel, D. Rosa, L.B. Murça, J.L. A Ferreira, J.A. Araújo, Effect of high mean tensile stress on the fretting fatigue life of a Ibis steel reinforced aluminum conductor, International Journal of Fatigue 42, (2012) 24-34.
DOI: 10.1016/j.ijfatigue.2011.03.007
Google Scholar
[7]
S. Guanhong, H. Xiaodong, J. Jiuxing, and S. Yue, Parametric study of Al and Al2O3 ceramic coatings deposited by air plasma spray onto polymer substrate, Applied Surface Science 257, (2011) 7864-7870.
DOI: 10.1016/j.apsusc.2011.04.057
Google Scholar
[8]
F. Meng, K. Tagashira, R. Azuma, H. Sohma, Role of eta-carbide precipitations in the wear resistance improvements of Fe-12Cr-Mo-V-1. 4C tool steel by cryogenic treatment, ISIJ International 34 (1994). 205-210.
DOI: 10.2355/isijinternational.34.205
Google Scholar
[9]
R.F. Barron, Cryogenic treatment of metals to improve wear resistance, Cryogenics 22 (8), (1982) 409-4013.
DOI: 10.1016/0011-2275(82)90085-6
Google Scholar
[10]
F.J. da Silva, S.D. Franco, Sinésio, A.R. Machado, E.O. Ezugwu, A.M. Souza Jr, Performance of cryogenically treated HSS tolls, Wear 261 (2006) 674-685.
DOI: 10.1016/j.wear.2006.01.017
Google Scholar
[11]
W. E. Bryson, Cryogenics, Hanser Gardner Publications, 1999, 210p.
Google Scholar
[12]
S. Zhirafar, Effect of cryogenic treatment on the mechanical properties of steel and aluminum alloys, Mechanical and industrial Engineering, Thesis Master of Applied Science. (Library and Archies Canada: Concordia University Quebec) (2005).
Google Scholar
[13]
B. Podgornik, F. Majdic, V. Leskovsek , and J. Vizintin. Improving tribological properties of tool steels through combination of deep-cryogenic treatment and plasma nitriding. Wear 288, (2012) 88-93.
DOI: 10.1016/j.wear.2011.04.001
Google Scholar
[14]
J.F. Archard, Contact and Rubbing of Flat Surfaces, Journal of Applied Physics 24, (1953) 981-988.
DOI: 10.1063/1.1721448
Google Scholar
[15]
R.I. Trezona and I.M. Hutchings, Three-body abrasive wear testing of soft materials, Wear 233–235, (1999) 209-221.
DOI: 10.1016/s0043-1648(99)00183-0
Google Scholar
[16]
M.G. Gee, A.J. Gant, I.M. Hutchings, Y. Kusano, K. Shiffman, K. Van Acker, S. Poulat, Y. Gachon, J. von Stebut, P. Hatto, G. Plint, Results from an interlaboratory exercise to validate the micro-scale abrasion test, Wear 259 (2005) 27-35.
DOI: 10.1016/j.wear.2005.02.092
Google Scholar
[17]
K.I. Schiffmann, R. Bethke, and N. Kristen, Analysis of perforating and non-perforating micro-scale abrasion tests on coated substrates, Surface and Coatings Technology 200, (2005) 2348-2357.
DOI: 10.1016/j.surfcoat.2005.01.015
Google Scholar
[18]
Gui Rong Li, Hong MingWang., Yun Cai, Xue Ting Yuan, Behavior of β(Mg17Al12) Phases in Mg-Al Alloy Subject to Cycling Cryogenic Treatment, Key Engineering Materials 575 - 576, (2013) 390-393.
DOI: 10.4028/www.scientific.net/kem.575-576.390
Google Scholar
[19]
J. Liu, G. Li, D. Chen, and Z. Chen, Effect of Cryogenic Treatment on Deformation Behavior of As-cast AZ91 Mg Alloy, Chinese Journal of Aeronautics 25 , (2012) 931-936.
DOI: 10.1016/s1000-9361(11)60464-0
Google Scholar
[20]
C. -C. Jain, C. -Y. Bai, S. -W. Chen, and C. -H. Koo, The Microstructure and Mechanical Properties of AZ31-xRE Magnesium Alloys, Materials Transactions 48, (2007) 1149 to 1156.
DOI: 10.2320/matertrans.48.1149
Google Scholar
[21]
P. Wang, W. Lu , Y. Wang, J. Liu, and R. Zhang, Effects of cryogenic treatment on the thermal physical properties of Cu76. 12Al23. 88 alloy, Rare Metals 30, (2011) 644-649.
DOI: 10.1007/s12598-011-0443-x
Google Scholar
[22]
Y. Kusano, K. Van Acker, I.M. Hutchings, Methods of data analysis for the micro-scale abrasion test on coated substrates, Surface and Coatings Technology 183 (2004) 312-327.
DOI: 10.1016/j.surfcoat.2003.10.010
Google Scholar