Wear Resistance of Ti-40Zr Alloy with TiN and ZrN Multilayer Coatings

Article Preview

Abstract:

Production and processing of titanium alloys are expensive and its alloys show low wear resistance. Substrates of Ti-40Zr, used for orthopedic implants, were obtained from the elemental mixture of hydrogenated powders, followed by a sequence of cold uniaxial and isostatic pressing and vacuum sintering. Aiming wear resistance increase, samples were coated by physical vapor deposition using electron beam technique (EB-PVD). Multilayer coatings with three different configurations were undertaken: Ti/TiN, Ti/TiN/ZrN and Ti/TiN/ZrN/TiN. Micro-abrasive wear tests were conducted by ball-cratering, with abrasive slurry of silicon carbide (SiC). The wear craters were measured at intervals corresponding to increments in the sliding distance of approximately 14 m. Range of the normal force were between 0.35 and 0,45 N. Scanning electron microscopy was used to evaluate the wear crater and the wear mode. All experiments showed three-body abrasive wear and a reduction of one order of magnitude in wear coefficient for two coated samples: 2,58∙10-12 m³(Nm)-1 to substrate, 5,4∙10-13 m³(Nm)-1 to Ti+TiN film and 7,22∙10-13 m³(Nm)-1 to Ti+TiN+ZrN film. In the Ti+TiN+ZrN+TiN experiment the wear coefficient of film is nearer to the substrate, 7,58∙10-13 m³(Nm)-1. The multi-layers containing ZrN presented wear coefficient higher than Ti/TiN films, possibly due to existing residual stresses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1056-1065

Citation:

Online since:

June 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] MarketandMarkets. Global Biomaterials Market worth US$58. 1 Billion by 2014. Disponível em <http: /www. marketsandmarkets. com/PressReleases/global-biomaterials-market-worth-US58. 1-Billion-by-2014. asp>. Acessed on feb. (2012).

DOI: 10.1117/2.4201410.08

Google Scholar

[2] BRASIL. Instituto Brasileiro de Geografia e Estatística (IBGE). Em 2010, esperança de vida ao nascer era de 73, 48 anos. Disponível em <http: /www. ibge. gov. br/home/presidencia/noticias/noticia_visualiza. php?id_noticia=2032&id_pagina=1&titulo=Em-2010, -esperanca-de-vida-ao-nascer-era-de-73, 48-anos>.

DOI: 10.52041/srap.15308

Google Scholar

[3] BRASIL. Departamento Nacional de Infraestrutura de Transportes (DNIT). Estatística de acidentes em estradas federais: Número de condutores envolvidos por sexo e idade do condutor ano de 2011. Disponível em: <http: /www. dnit. gov. br/rodovias/operacoes-rodoviarias/estatisticas-de-acidentes/quadro-0302-numero-de-condutores-envolvidos-por-sexo-e-idade-do-condutor-ano-de-2011. pdf>.

DOI: 10.54507/viaviva.2017.17

Google Scholar

[4] ABIMO. Dados econômicos. Disponível em <http: /www. abimo. org. br/modules/content/content. php?page=dados-economicos>. Acessed on feb. (2012).

Google Scholar

[5] M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 19(18), (2008). p.1621 – 1639.

DOI: 10.1016/j.jmbbm.2007.07.001

Google Scholar

[6] M. Geetha, A. K. Singh, R.A. sokamani, A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress im materials science, 54, (2009). pp.397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[7] A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhacing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface & Coatings Technology, 200, (2005), p.2192 – 2207.

DOI: 10.1016/j.surfcoat.2004.07.115

Google Scholar

[8] C. J. Tavares et al., Mechanical characterization of TiN/ZrN multi-layered coatings. Journal of Materials Processing Technology 92-93, (1999), p.177 – 183.

DOI: 10.1016/s0924-0136(99)00126-0

Google Scholar

[9] Y. Tamura et al., Mechanical properties of surface nitrided titanium for abrasion resistant implant materials. Materials Transactions, vol 43 (12), (2002), p.3043 – 3051.

DOI: 10.2320/matertrans.43.3043

Google Scholar

[10] D. K. Boampong, The wear behaviour of ion implanted biomaterials. 2003. 276 p. Tese, Durham University. Reino Unido.

Google Scholar

[11] K.L. Rutherford, I.M. Hutchings, A micro-abrasive wear test, with particular application to coated systems. Surface & Coatings Technology, 79, (1996), p.231 – 239.

DOI: 10.1016/0257-8972(95)02461-1

Google Scholar

[12] Y. Kusano, K. Van Acker, I.M. Hutchings, Methods of data analysis for the micro-scale test on coated systems. Surface & Coating Technology, 183, (2004), pp.312-327.

DOI: 10.1016/j.surfcoat.2003.10.010

Google Scholar

[13] R. I. Trezona, D. N. Allsopp, I. M. Hutchings, Transitions between two-body and three-body abrasive wear: influence of test conditions in microscale abrasive wear test. Wear, 225 – 229, (1999), p.205 – 214.

DOI: 10.1016/s0043-1648(98)00358-5

Google Scholar

[14] E. T. Galvani, Obtenção de revestimentos de nitreto de titânio por meio de deposição física de vapores em ligas de titânio obtidas por metalurgia do pó. 2011. 218p. Tese, Instituto Tecnológico da Aeronáutica. Brasil.

DOI: 10.11606/t.85.2013.tde-26032014-081829

Google Scholar

[15] L.M. Gammon, et al. Metallography and microstructures of Titanium and its alloys, Metallography and Microstructures, Vol 9, ASM Handbook, ASM International, 2004, p.899–917.

DOI: 10.31399/asm.hb.v09.a0003779

Google Scholar

[16] M.G. Gee et al., Progress towards standardization of ball cratering. Wear, 255, (2003), pp.1-13.

Google Scholar

[17] W.F. Ho, et al. Structure, mechanical properties and grindability of dental Ti-Zr alloys. Journal of Materials Science: Materials in Medicine, 19, (2008), p.3179 – 3186.

DOI: 10.1007/s10856-008-3454-x

Google Scholar

[18] http: /www. infomet. com. br/metais-e-ligas-conteudos. php?cod_tema=10&cod_secao=14&cod_assunto=93, acessed on 06/10/(2013).

Google Scholar

[19] R. B. Boyer, Titanium and titanium alloys: metallographic techniques and microstructure. Metallography and Microstructures, Vol 9, ASM Handbook, ASM International, (1992), p.968–975.

Google Scholar

[20] I. Wadsworth, D. B Lewis, G. Williams, Structural studies of TiN/ZrN multilayer coating deposited by physical vapour deposition. Journal of Materials Science, 31, (1996), p.5907 – 5914.

DOI: 10.1007/bf01152140

Google Scholar

[21] O. B. Soroka, S. A. Klymenko, Evaluation of residual stress in PVD coating. Part 2. Strength of Materials, 42 (4), (2010), p.450 – 458.

DOI: 10.1007/s11223-010-9236-y

Google Scholar

[22] J.A. Ortega-Saenz et al., Comparison of wear processes of biomaterials used in hip joint implants. Scientific Problems of Machine Operation and Maintenance, 4 (156), (2008), p.15 – 26.

Google Scholar