[1]
MarketandMarkets. Global Biomaterials Market worth US$58. 1 Billion by 2014. Disponível em <http: /www. marketsandmarkets. com/PressReleases/global-biomaterials-market-worth-US58. 1-Billion-by-2014. asp>. Acessed on feb. (2012).
DOI: 10.1117/2.4201410.08
Google Scholar
[2]
BRASIL. Instituto Brasileiro de Geografia e Estatística (IBGE). Em 2010, esperança de vida ao nascer era de 73, 48 anos. Disponível em <http: /www. ibge. gov. br/home/presidencia/noticias/noticia_visualiza. php?id_noticia=2032&id_pagina=1&titulo=Em-2010, -esperanca-de-vida-ao-nascer-era-de-73, 48-anos>.
DOI: 10.52041/srap.15308
Google Scholar
[3]
BRASIL. Departamento Nacional de Infraestrutura de Transportes (DNIT). Estatística de acidentes em estradas federais: Número de condutores envolvidos por sexo e idade do condutor ano de 2011. Disponível em: <http: /www. dnit. gov. br/rodovias/operacoes-rodoviarias/estatisticas-de-acidentes/quadro-0302-numero-de-condutores-envolvidos-por-sexo-e-idade-do-condutor-ano-de-2011. pdf>.
DOI: 10.54507/viaviva.2017.17
Google Scholar
[4]
ABIMO. Dados econômicos. Disponível em <http: /www. abimo. org. br/modules/content/content. php?page=dados-economicos>. Acessed on feb. (2012).
Google Scholar
[5]
M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 19(18), (2008). p.1621 – 1639.
DOI: 10.1016/j.jmbbm.2007.07.001
Google Scholar
[6]
M. Geetha, A. K. Singh, R.A. sokamani, A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress im materials science, 54, (2009). pp.397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[7]
A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhacing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface & Coatings Technology, 200, (2005), p.2192 – 2207.
DOI: 10.1016/j.surfcoat.2004.07.115
Google Scholar
[8]
C. J. Tavares et al., Mechanical characterization of TiN/ZrN multi-layered coatings. Journal of Materials Processing Technology 92-93, (1999), p.177 – 183.
DOI: 10.1016/s0924-0136(99)00126-0
Google Scholar
[9]
Y. Tamura et al., Mechanical properties of surface nitrided titanium for abrasion resistant implant materials. Materials Transactions, vol 43 (12), (2002), p.3043 – 3051.
DOI: 10.2320/matertrans.43.3043
Google Scholar
[10]
D. K. Boampong, The wear behaviour of ion implanted biomaterials. 2003. 276 p. Tese, Durham University. Reino Unido.
Google Scholar
[11]
K.L. Rutherford, I.M. Hutchings, A micro-abrasive wear test, with particular application to coated systems. Surface & Coatings Technology, 79, (1996), p.231 – 239.
DOI: 10.1016/0257-8972(95)02461-1
Google Scholar
[12]
Y. Kusano, K. Van Acker, I.M. Hutchings, Methods of data analysis for the micro-scale test on coated systems. Surface & Coating Technology, 183, (2004), pp.312-327.
DOI: 10.1016/j.surfcoat.2003.10.010
Google Scholar
[13]
R. I. Trezona, D. N. Allsopp, I. M. Hutchings, Transitions between two-body and three-body abrasive wear: influence of test conditions in microscale abrasive wear test. Wear, 225 – 229, (1999), p.205 – 214.
DOI: 10.1016/s0043-1648(98)00358-5
Google Scholar
[14]
E. T. Galvani, Obtenção de revestimentos de nitreto de titânio por meio de deposição física de vapores em ligas de titânio obtidas por metalurgia do pó. 2011. 218p. Tese, Instituto Tecnológico da Aeronáutica. Brasil.
DOI: 10.11606/t.85.2013.tde-26032014-081829
Google Scholar
[15]
L.M. Gammon, et al. Metallography and microstructures of Titanium and its alloys, Metallography and Microstructures, Vol 9, ASM Handbook, ASM International, 2004, p.899–917.
DOI: 10.31399/asm.hb.v09.a0003779
Google Scholar
[16]
M.G. Gee et al., Progress towards standardization of ball cratering. Wear, 255, (2003), pp.1-13.
Google Scholar
[17]
W.F. Ho, et al. Structure, mechanical properties and grindability of dental Ti-Zr alloys. Journal of Materials Science: Materials in Medicine, 19, (2008), p.3179 – 3186.
DOI: 10.1007/s10856-008-3454-x
Google Scholar
[18]
http: /www. infomet. com. br/metais-e-ligas-conteudos. php?cod_tema=10&cod_secao=14&cod_assunto=93, acessed on 06/10/(2013).
Google Scholar
[19]
R. B. Boyer, Titanium and titanium alloys: metallographic techniques and microstructure. Metallography and Microstructures, Vol 9, ASM Handbook, ASM International, (1992), p.968–975.
Google Scholar
[20]
I. Wadsworth, D. B Lewis, G. Williams, Structural studies of TiN/ZrN multilayer coating deposited by physical vapour deposition. Journal of Materials Science, 31, (1996), p.5907 – 5914.
DOI: 10.1007/bf01152140
Google Scholar
[21]
O. B. Soroka, S. A. Klymenko, Evaluation of residual stress in PVD coating. Part 2. Strength of Materials, 42 (4), (2010), p.450 – 458.
DOI: 10.1007/s11223-010-9236-y
Google Scholar
[22]
J.A. Ortega-Saenz et al., Comparison of wear processes of biomaterials used in hip joint implants. Scientific Problems of Machine Operation and Maintenance, 4 (156), (2008), p.15 – 26.
Google Scholar