[1]
S. Weng,C. Chen, C. J. Shang, J. Y. Weng, D. Y. Li, Corrosion behavior of a new developed ferritic stainless steels used in automobile exhaust system, Advanced Materials Research, 89-91 (2010) 102-106.
DOI: 10.4028/www.scientific.net/amr.89-91.102
Google Scholar
[2]
Saedlou, P. Santacreu, Suitable stainless steel selection for exhaust line containing a Selective Catalytic Reduction (SCR) system, SAE 2011 World Congress and Exhibition, (2011).
DOI: 10.4271/2011-01-1323
Google Scholar
[3]
M. Barteri, F. Fazio, S. Fortunati, Stainless steels in car exhaust gas systems, Metallurgia Italiana, 91, 5 (1999) 31-36.
Google Scholar
[4]
A. Miyazaki, J. Hirasawa, S. Satoh, Advanced stainless steels for stricter regulations of automotive exhaust gas, Kawasaki Steel Technical Report, 43 (2000) 21-28.
Google Scholar
[5]
T. L. Sudesh, L. Wijesinghe, D. J. Blackwood, characterization of passive films of 300 series stainless steels, Applied Surface Science, 253(2006) 1006-1009.
DOI: 10.1016/j.apsusc.2006.03.081
Google Scholar
[6]
T. L. Sudesh, L. Wijesinghe, D. J. Blackwood, Real time pit initiation studies on stainless steels: the effects of sulfide inclusion. Corrosion Science, 49 (2007) 1755-1764.
DOI: 10.1016/j.corsci.2006.10.025
Google Scholar
[7]
L. M. Cabalin, M. P. Mateo, J. J. Laserna, Larger area mapping of non metallic inclusions in stainless steel by an automated system based on laser ablation, Spectrochimica Acta Part B 59 (2004) 567-575.
DOI: 10.1016/j.sab.2004.01.014
Google Scholar
[8]
D. E. Williams, M. R. Kilburn, J. Cliff, G. I. N. Waterhouse, Compositional change around sulphide inclusions in stainless steels and implications for the initiation of pitting corrosion, Corrosion Science, 52 (2010) 3702-3716.
DOI: 10.1016/j.corsci.2010.07.021
Google Scholar