[1]
Zhang Dong, Zhang Pu-liang, Pan Xiao-jing, et al. Corrosion performance of medical titanium alloys in three different physiological electrolytes[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(34): 6689-6692.
Google Scholar
[2]
M. J. Werbitt, P. V. Goldberg. The immediate implant: bone preservation and bone regeneration [J]. The International Journal of Periodontics & Restorative Dentistry, 1992, 12(3): 206-217.
Google Scholar
[3]
S. A. Jovanovic, H. Spiekermann, E. J. Richter. Bone regeneration around titanium dental implants in dehisced defect sites: a clinical study[J]. International Journal of Oral and Maxillofacial Implants, 1992, 7(2): 233-245.
Google Scholar
[4]
A. Wennerberg, T. Albrektsson. Effects of titanium surface topography on bone integration: a systematic review[J]. Clinical Oral Implant Research, 2009, 20(Supplement s4): 172–184.
DOI: 10.1111/j.1600-0501.2009.01775.x
Google Scholar
[5]
Z. Qu, X. H. Rausch-Fan, M. Wieland, et al. The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification[J]. Journal of Biomedical Materials Research Part A, 2007, 82A (3): 658-668.
DOI: 10.1002/jbm.a.31023
Google Scholar
[6]
A. Wennerberg. The importance of surface roughness for implant incorporation[J]. Int. J. Mach. Tools Manufact, 1998, 38(S5-6): 657-662.
DOI: 10.1016/s0890-6955(97)00114-4
Google Scholar
[7]
S. Szmukler-Moncler, D. Perrin, V. Ahossi, et al. Biological properties of acid etched titanium implants: effect of sandblasting on bone anchorage[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004, 68B(2): 149-159.
DOI: 10.1002/jbm.b.20003
Google Scholar
[8]
R. N. Pierson, J. Wang, E. W. Colt, P. Neumann. Body composition measurements in normal man: The potassium, sodium, sulfate and tritium spaces in 58 adults[J]. Journal of Chronic Diseases, 1982, 35(6): 419-428.
DOI: 10.1016/0021-9681(82)90056-x
Google Scholar
[9]
Wang Ming, Song Xiping. Study actuality of corrosion, mechanical compatibility and biocompatibility of titanium alloys for medical application[J]. Titanium industry progress, 2008, 25(2): 13-18.
Google Scholar
[10]
E. P. Lautenschlager, N. K. Sarker, A. Acharya, et al. Anodic polarization of porous fiber metals[J]. J. Biomed. Mater. Res., 1974, 8(2): 189–191.
DOI: 10.1002/jbm.820080208
Google Scholar
[11]
Cao Hongdan. The study on properties of surfaces of titanium implants treated by different roughing methods[D]. Sichuan University, (2005).
Google Scholar
[12]
L. Joska, J. Fojt. Corrosion behaviour of titanium after short-term exposure to an acidic environment containing fluoride ions[J]. J Mater Sci: Mater Med, 2010, 21(2): 481–488.
DOI: 10.1007/s10856-009-3930-y
Google Scholar
[13]
Yan Honghai, Hu Linghua, Huang Hairong. Corrosion resistance of pure titanium implant with different surface micro roughness[J]. Chinese Journal of Oral Implantology, 2008, 13(4): 175-179.
Google Scholar
[14]
C. Aparicio, F. J. Gil, C. Fonseca, et al. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications[J]. Biomaterials, 2003, 24(2): 263-273.
DOI: 10.1016/s0142-9612(02)00314-9
Google Scholar
[15]
R. M. Pilliar. Porous-surfaced metallic implants for orthopedic applications[J]. Journal of Biomedical Materials Research, 1987, 21(A1 Suppl): 1-33.
Google Scholar
[16]
Lv Yupeng, Zhu Ruifu, Ma Quansheng, et al. Current evolution of biomedical titanium and its alloy implant materials[J]. Chinese Journal of Oral Implantology, 2000, 5(1): 43-49.
Google Scholar
[17]
Z. Lin, Y. Wang, D. N. Wang, et al. Porous structure preparation and wetability control on titanium implant[J]. Surface and Coatings Technology, 2013, 228(Supplement 1): S131–S136.
DOI: 10.1016/j.surfcoat.2012.07.007
Google Scholar
[18]
Cao Chunan. Principles of electrochemistry of corrosion[M]. Beijing: Chemical Industry Press, (2008).
Google Scholar
[19]
A. S. Hiyasat, O. M. Bashabsheh, H. Darmani. Elements released from dental casting alloys and their cytotoxic effects[J]. Int J Prosthodont, 2002, 15(5): 473 – 478.
Google Scholar
[20]
Liu Li, Mao Yingjie, Chen Zhihong. The effect on the corrosion resistance of titanium alloy in the artificial saliva with different ph value[J]. Chinese Journal of Biomedical Engineering, 2006, 25(2): 166-169.
Google Scholar
[21]
Xue Yongqiang, Luan Chunhui, Fan Jinchuan. The Effect of Rough Surfaces on Chemical Corrosions of Metals[J]. Materials Review, 1998, 12(2): 23-24.
Google Scholar
[22]
W. Li, D.Y. Li. Influence of surface morphology on corrosion and electronic behavior[J]. Acta Materialia, 2006, 54(2): 445–452.
DOI: 10.1016/j.actamat.2005.09.017
Google Scholar