[1]
X.G. Lu, M. Selleby, B. Sundman, Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements, CALPHAD 29 (2005) 68-89.
DOI: 10.1016/j.calphad.2005.05.001
Google Scholar
[2]
Y.L. He, X.G. Lu, N.Q. Zhu, B. Sundman, CALPHAD Modeling of Molar Volume, Chin. Sci. Bull. 58 (2013) 3642-3646.
Google Scholar
[3]
C. Wolverton, Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys, Acta Mater. 49 (2001) 3129-3142.
DOI: 10.1016/s1359-6454(01)00229-4
Google Scholar
[4]
C. Jiang, First-principles study of ternary bcc alloys using special quasi-random structures, Acta Mater. 57 (2009) 4716-4726.
DOI: 10.1016/j.actamat.2009.06.026
Google Scholar
[5]
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.
DOI: 10.1103/physrevb.59.1758
Google Scholar
[6]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[7]
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3368.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[8]
Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L. -Q. Chen, Z. -K. Liu, Ab initio lattice stability in comparison with CALPHAD lattice stability, CALPHAD 28 (2004) 79-90.
DOI: 10.1016/j.calphad.2004.05.002
Google Scholar
[9]
B. Jansson, TRITA-MAC 0234, Royal Institute of Technology, Stockholm, Sweden. (1984).
Google Scholar
[10]
J. -O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Thermo-Calc and DICTRA, computational tools for materials science, CALPHAD 26 (2002) 273-312.
DOI: 10.1016/s0364-5916(02)00037-8
Google Scholar
[11]
A. Taylor, R.W. Floyd, The constitution of nickel-rich alloys of the Ni-Cr-Ti system, Inst. Met. 80 (1952) 577-587.
Google Scholar
[12]
W.B. Pearson, L.T. Thompson, The lattice spacings of nickel solid solutions, Can. J. Phys. 35 (1957) 349-357.
DOI: 10.1139/p57-040
Google Scholar
[13]
H. G. Baer, Superstruture and K-state in the Cr-Ni system, Z. Metallkd. 49 (1958) 614-622.
Google Scholar
[14]
B.M. Rovinsky, A.I. Samoilov, G.M. Rovensky, Distortions in the crystal lattice in nickel-base alloys at temperatures of 25-500 Celsius, Fiz. Met. Metallogr. 7 (1959) 73-83.
Google Scholar
[15]
I.I. Kornilov, A.Y. Snetkov, The lattice constants of limited solid solutions of some elements in nickel, Issled. Zharoproch. Splavam, Akad. Nauk SSSR, Inst., Met. Im. A. A Baikova 7 (1961) 106-111.
Google Scholar
[16]
L. Karmazin, M. Svoboda, New lattice parameter measurement of the homogeneous Ni-Cr solid solution, Kovove Mater. 17 (1979) 355-362.
Google Scholar
[17]
Y. Mishima, S. Ochiai, T. Suzuki, Lattice parameters of Ni(γ), Ni3Al (γ') and Ni3Ga (γ') solid solutions with additions of transition and B-subgroup elements, Acta Metall. 33 (1985) 1161-1169.
DOI: 10.1016/0001-6160(85)90211-1
Google Scholar
[18]
A.S. Pavlovic, V.S. Babu, High-temperature thermal expansion of binary alloys of Ni with Cr, Mo and Re: a comparison with molecular dynamics simulations, J. Phys. 8 (1996) 3139-3149.
Google Scholar
[19]
W.B. Pearson, A hand book of lattice spacings and structures of metals and alloys, fourth ed., Pergamon, London, (1979).
Google Scholar
[20]
W. Hofmann, H. Wiehr, Kristallographische und röntgenographische Studien an Aluminium-Chrom-Legierungen, Z. Metallkde. 33 (1941) 369-372.
DOI: 10.1515/ijmr-1941-331102
Google Scholar
[21]
E. Gebhardt, W. Köster, Contribution to the system platinum-chromium, Z. Metallkd. 32 (1940) 262-264.
Google Scholar
[22]
P. Greenfield, P.A. Beck, Intermediate phases in binary systems of certain transition elements, Trans. AIME. 206 (1956) 265-276.
DOI: 10.1007/bf03377684
Google Scholar
[23]
G. Grube, R. Knabe, Electrical conductivity and phase diagram of binary alloys. 21: The system palladium-chromium. Z. Elektrochem. 42 (1936) 793-804.
Google Scholar
[24]
E. Raub, W. Mahler, Die palladium-chrom legierungen, Z. Metallkd. 45 (1954) 567-568.
Google Scholar
[25]
W. Slusark, B. Lalevic, N. Fuschillo, Structure and electrical conductivity of cosputtered gold-chromium alloy films, J. Aappl. Phys. 44 (1973) 2891-2892.
DOI: 10.1063/1.1662667
Google Scholar
[26]
R.E.W. Casselton, W. Hume-Rothery, The equilibrium diagram of the system Mo-Ni, J. Less-Common Met. 7 (1964) 212-221.
DOI: 10.1016/0022-5088(64)90068-2
Google Scholar
[27]
P.W. Guthrie, E.E. Stansbury: Report No. ORNL-3078, Oak Ridge National Laboratory, Oak Ridge, TN, (1961).
DOI: 10.2172/12536581
Google Scholar
[28]
G. Grube, H. Schlecht, Elektrische Leitfähigkeit und Zustandsdiagramm bei binären Legierungen. 23. Mitteilung. Das System Nickel-Molybdän, Z. Elektrochem. 44 (1938) 413-422.
DOI: 10.1002/zaac.19332150208
Google Scholar
[29]
W. Koster, W. Schmidt. Correlation Between Lattice Parameter and Ferromagnetism. Arch. Eiscnhuttenwe. 8 (1934) 25-27.
Google Scholar
[30]
E. Raub, Die Legierungen der Platinmetalle mit Molybdaen, Z. Metallkd. 45 (1954) 23-30.
Google Scholar
[31]
E. Kudielka-Artner, B.B. Argent, Magnetic and other Properties of some Binary Palladium Alloys, Proc. Phys. Soc. 80 (1962) 1143-1148.
DOI: 10.1088/0370-1328/80/5/314
Google Scholar
[32]
A.V. Progrushchenko, Yu. M. Lebedev, X-ray study of heat expansion of nickel-chromium alloys, Ukrains'kii Fizichnii Zhurna 14 (1969) 282-286.
Google Scholar