[1]
Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, Iron-Based Layered Superconductor: LaOFeP. J. Am. Chem. Soc. 128 (2006) 10012.
DOI: 10.1021/ja063355c
Google Scholar
[2]
Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0. 05−0. 12) with Tc = 26 K. J. Am. Chem. Soc. 130 (2008) 3296.
DOI: 10.1021/ja800073m.s002
Google Scholar
[3]
Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx]FeAs. Chin. Phys. Lett. 25 (2008) 2215.
DOI: 10.1142/9789813273146_0016
Google Scholar
[4]
Z. A. Ren, G. C. Che, X. L. Dong, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, L. L. Sun, F. Zhou, and Z. X. Zhao, Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re=rare-earth metal) without fluorine doping. Europhys. Lett. 83 (2008).
DOI: 10.1209/0295-5075/83/17002
Google Scholar
[5]
C. Wang, Y. K. Li, Z. W. Zhu, S. Jiang, X. Lin, Y. K. Luo, S. Chi, L. J. Li, Z. Ren, M. He, H. Chen, Y. T. Wang, Q. Tao, G. H. Cao, and Z. A. Xu, Effects of cobalt doping and phase diagrams of LFe1−xCoxAsO (L=La and Sm). Phys. Rev. B 79 (2009).
Google Scholar
[6]
A. S. Sefat, M. A. McGuire, B. C. Sales, R. Jin, J. Y. Howe, and D. Mandrus, Electronic correlations in the superconductor LaFeAsO0. 89F0. 11 with low carrier density. Phys. Rev. B 77 (2008) 174503.
Google Scholar
[7]
H. Kito,H. Eisaki, and A. Iyo, Superconductivity at 54 K in F-Free NdFeAsO1-y. J. Phys. Soc. Jpn. 77 (2008) 063707.
DOI: 10.1143/jpsj.77.063707
Google Scholar
[8]
F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen,T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, M. K. Wu, Superconductivity in the PbO-type structure α-FeSe. Natl. Acad. Sci. USA 105 (2008) 14262.
DOI: 10.1073/pnas.0807325105
Google Scholar
[9]
S. Medvedev, T.M. McQueen, I.A. Troyan,T. Palasyuk, M.I. Eremets, R.J. Cava,S. Naghavi, F. Casper, V. Ksenofontov,G. Wortmann, C. Felser, Electronic and magnetic phase diagram of bold italic beta-Fe1. 01Se with superconductivity at 36. 7 K under pressure. Nat. Mater. 8 (2008).
DOI: 10.1038/nmat2491
Google Scholar
[10]
Alaska Subedi, Lijun Zhang, D. J. Singh, M. H. Du, Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity. Phys. Rev. B 78 (2008) 134514.
DOI: 10.1103/physrevb.78.134514
Google Scholar
[11]
D. Fruchart, P. Convert, P. Wolfers, R. Madar, J.P. Senateur, R. Fruchart, Structure antiferroma gnetique de Fe1. 125Te accompagnee d'une deformation monoclinique. Mater. Res. Bull. 10 (1975) 169.
DOI: 10.1016/0025-5408(75)90151-8
Google Scholar
[12]
Lijun Zhang, D. J. Singh, and M. H. Du, Density functional study of excess Fe in Fe1+xTe: Magnetism and doping. Phys. Rev. B 79 (2009) 012506.
Google Scholar
[13]
W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. H. Fang, B. Qian,E. K. Vehstedt, J. H. Yang, H. M. Pham, L. Spinu, and Z. Q. Mao, Tunable (δπ, δπ)-Type Antiferromagnetic Order in α-Fe(Te, Se) Superconductors. Phys. Rev. Lett. 102 (2009).
DOI: 10.1103/physrevlett.102.247001
Google Scholar
[14]
Zhijun Xu, Jinsheng Wen, Guangyong Xu, Qing Jie, Zhiwei Lin, Qiang Li, Songxue Chi, D. K. Singh, Genda Gu, J. M. Tranquada, Disappearance of static magnetic order and evolution of spin fluctuations in Fe1+δSexTe1−x. Phys. Rev. B 82 (2010) 104525.
Google Scholar
[15]
Shiliang Li, Clarina de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, Jiangping Hu, Yi-Lin Huang, Fong-Chi Hsu, Kuo-Wei Yeh, Maw-Kuen Wu, and Pengcheng Dai, Firs t-order magnetic and structural phase transitions in Fe1+ySexTe1−x. Phys. Rev. B 79 (2009).
Google Scholar
[16]
Y Mizuguchi, F Tomioka, S Tsuda, T Yamaguchi,Y. Takano: FeTe as a candidate material for new iron-based superconductor. Physica C 469 (2009) 1027.
DOI: 10.1016/j.physc.2009.05.177
Google Scholar
[17]
Y. Han, W. Y. Li, L. X. Cao, X. Y. Wang, B. Xu, B. R. Zhao, Y. Q. Guo, and J. L. Yang, Superconductivity in Iron Telluride Thin Films under Tensile Stress. Phys. Rev. Lett. 104 (2010) 017003.
DOI: 10.1103/physrevlett.104.017003
Google Scholar