Influence of Nitrogen Atmosphere Annealing on Structural and Transport Properties of Fe1.125Te

Article Preview

Abstract:

Fe1.125Te alloys had been synthesized by solid state reaction methods. The effects of nitrogen annealing on Fe1.125Te lattice structure and physical properties had been studied. It was found that the lattice constants a and c increased after annealed at temperature 400~600 oC. When the temperature is above 850 oC, the size of the unit cell returns to the similar size of original samples. The step-like magnetic-thermal curves were observed after annealed at 900 oC, which is associated with two magnetic transitions. In vacuum, the transition temperatures are 122 K and 128 K, while in the nitrogen, they are 122 K and 138 K. The resistance-temperature curves indicate a semiconductor to metal transition around 69 K for N2 atmosphere.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1234-1238

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, Iron-Based Layered Superconductor:  LaOFeP. J. Am. Chem. Soc. 128 (2006) 10012.

DOI: 10.1021/ja063355c

Google Scholar

[2] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0. 05−0. 12) with Tc = 26 K. J. Am. Chem. Soc. 130 (2008) 3296.

DOI: 10.1021/ja800073m.s002

Google Scholar

[3] Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx]FeAs. Chin. Phys. Lett. 25 (2008) 2215.

DOI: 10.1142/9789813273146_0016

Google Scholar

[4] Z. A. Ren, G. C. Che, X. L. Dong, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, L. L. Sun, F. Zhou, and Z. X. Zhao, Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re=rare-earth metal) without fluorine doping. Europhys. Lett. 83 (2008).

DOI: 10.1209/0295-5075/83/17002

Google Scholar

[5] C. Wang, Y. K. Li, Z. W. Zhu, S. Jiang, X. Lin, Y. K. Luo, S. Chi, L. J. Li, Z. Ren, M. He, H. Chen, Y. T. Wang, Q. Tao, G. H. Cao, and Z. A. Xu, Effects of cobalt doping and phase diagrams of LFe1−xCoxAsO (L=La and Sm). Phys. Rev. B 79 (2009).

Google Scholar

[6] A. S. Sefat, M. A. McGuire, B. C. Sales, R. Jin, J. Y. Howe, and D. Mandrus, Electronic correlations in the superconductor LaFeAsO0. 89F0. 11 with low carrier density. Phys. Rev. B 77 (2008) 174503.

Google Scholar

[7] H. Kito,H. Eisaki, and A. Iyo, Superconductivity at 54 K in F-Free NdFeAsO1-y. J. Phys. Soc. Jpn. 77 (2008) 063707.

DOI: 10.1143/jpsj.77.063707

Google Scholar

[8] F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen,T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, M. K. Wu, Superconductivity in the PbO-type structure α-FeSe. Natl. Acad. Sci. USA 105 (2008) 14262.

DOI: 10.1073/pnas.0807325105

Google Scholar

[9] S. Medvedev, T.M. McQueen, I.A. Troyan,T. Palasyuk, M.I. Eremets, R.J. Cava,S. Naghavi, F. Casper, V. Ksenofontov,G. Wortmann, C. Felser, Electronic and magnetic phase diagram of bold italic beta-Fe1. 01Se with superconductivity at 36. 7 K under pressure. Nat. Mater. 8 (2008).

DOI: 10.1038/nmat2491

Google Scholar

[10] Alaska Subedi, Lijun Zhang, D. J. Singh, M. H. Du, Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity. Phys. Rev. B 78 (2008) 134514.

DOI: 10.1103/physrevb.78.134514

Google Scholar

[11] D. Fruchart, P. Convert, P. Wolfers, R. Madar, J.P. Senateur, R. Fruchart, Structure antiferroma gnetique de Fe1. 125Te accompagnee d'une deformation monoclinique. Mater. Res. Bull. 10 (1975) 169.

DOI: 10.1016/0025-5408(75)90151-8

Google Scholar

[12] Lijun Zhang, D. J. Singh, and M. H. Du, Density functional study of excess Fe in Fe1+xTe: Magnetism and doping. Phys. Rev. B 79 (2009) 012506.

Google Scholar

[13] W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. H. Fang, B. Qian,E. K. Vehstedt, J. H. Yang, H. M. Pham, L. Spinu, and Z. Q. Mao, Tunable (δπ, δπ)-Type Antiferromagnetic Order in α-Fe(Te, Se) Superconductors. Phys. Rev. Lett. 102 (2009).

DOI: 10.1103/physrevlett.102.247001

Google Scholar

[14] Zhijun Xu, Jinsheng Wen, Guangyong Xu, Qing Jie, Zhiwei Lin, Qiang Li, Songxue Chi, D. K. Singh, Genda Gu, J. M. Tranquada, Disappearance of static magnetic order and evolution of spin fluctuations in Fe1+δSexTe1−x. Phys. Rev. B 82 (2010) 104525.

Google Scholar

[15] Shiliang Li, Clarina de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, Jiangping Hu, Yi-Lin Huang, Fong-Chi Hsu, Kuo-Wei Yeh, Maw-Kuen Wu, and Pengcheng Dai, Firs t-order magnetic and structural phase transitions in Fe1+ySexTe1−x. Phys. Rev. B 79 (2009).

Google Scholar

[16] Y Mizuguchi, F Tomioka, S Tsuda, T Yamaguchi,Y. Takano: FeTe as a candidate material for new iron-based superconductor. Physica C 469 (2009) 1027.

DOI: 10.1016/j.physc.2009.05.177

Google Scholar

[17] Y. Han, W. Y. Li, L. X. Cao, X. Y. Wang, B. Xu, B. R. Zhao, Y. Q. Guo, and J. L. Yang, Superconductivity in Iron Telluride Thin Films under Tensile Stress. Phys. Rev. Lett. 104 (2010) 017003.

DOI: 10.1103/physrevlett.104.017003

Google Scholar