Effect of Traverse Speed on the Microstructure and Mechanical Properties in Friction Stir Welded Dissimilar Barrier Butt Joints of AA2024 to AA6061/SiC/55p Composite

Article Preview

Abstract:

Dissimilar barrier butt joints of AA2024 to AA6061/SiC/55p composite were fabricated by friction stir welding. Effect of the traverse speed on interface bonding, joint microstructure and tensile properties was investigated. Results revealed that, all joints possessed a tensile strength stronger than 80% that of the composite base materials, and the highest strength value was 178MPa. Macro interface can be readily identified in the weld zone between AA2024 and AA6061/SiC/55p composite, of which the area decreased and then increased as the traverse speed increased. The size and shape of SiC particles in the interface zone varied a lot due to different stirring effect and forward impact of the pin in different traverse speeds. Increasingly impairment of the composite base material near the interface was also detected with the traverse speed increasing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1735-1741

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Li, Y. Shen, A feasibility research on friction stir welding of a new-typed lap–butt joint of dissimilar Al alloys, J. Mater. Des. 34 (2012) 725-731.

DOI: 10.1016/j.matdes.2011.05.033

Google Scholar

[2] D. Wang, B.L. Xiao, Q.Z. Wang and Z.Y. Ma, Friction stir welding of SiCp/2009Al composite plate, J. Mater. Des. 47 (2013) 243-247.

DOI: 10.1016/j.matdes.2012.11.052

Google Scholar

[3] F. Cioffi, R. Fernández, D. Gesto, P. Rey, D. Verdera and G. González-Doncel, Friction stir welding of thick plates of aluminum alloy matrix composite with a high volume fraction of ceramic reinforcement, J. Composites Part A 54 (2013) 117-123.

DOI: 10.1016/j.compositesa.2013.07.011

Google Scholar

[4] H.S. Lee, K.Y. Jeon, H.Y. Kim and S.H. Hong, Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications, J. J. Mater. Sci. 35 (2000) 6231-6236.

Google Scholar

[5] J. Sadanandam, G. Bhikshamaiah, B. Gopalakrishna, S.V. Suryanarayana, Y.R. Mahajan and M.K. Jain, Effect of different reinforcements on the thermal expansion of 2124 aluminium metal-matrix composites, J. J. Mater. Sci. Lett. 11 (1992) 1518-1520.

DOI: 10.1007/bf00729277

Google Scholar

[6] Y. Katoh, L.L. Snead, C.H. Henager Jr., A. Hasegawa, A. Kohyama, B, Riccardi and H. Hegeman, Current status and critical issues for development of SiC composites for fusion applications, J. J. Nucl. Mater. 367 (2007) 659-671.

DOI: 10.1016/j.jnucmat.2007.03.032

Google Scholar

[7] R.H. Jones, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, B. Riccardi, L.L. Snead and W.J. Weber, Promise and challenges of SiCf/SiC composites for fusion energy applications, J. J. Nucl. Mater. 307 (2002) 1057-1072.

DOI: 10.1016/s0022-3115(02)00976-5

Google Scholar

[8] D. Storjohann, O.M. Barabash, S.A. David, P.S. Sklad, E.E. Bloom and S.S. Babu. Fusion and Friction Stir Welding of Aluminum Metal Matrix Composites, J. Metall. Mater. Trans. A 36 (2005) 3237-3247.

DOI: 10.1007/s11661-005-0093-4

Google Scholar

[9] R. García, V.H. López, A.R. Kennedy and G. Arias, Welding of Al-359/20% SiCp metal matrix composites by the novel MIG process with indirect electric arc (IEA), J. J. Mater. Sci. 42 (2007) 7794-7800.

DOI: 10.1007/s10853-007-1632-8

Google Scholar

[10] H.Z. Ye, X.Y. Liu, Review of recent studies in magnesium matrix composites, J. J. Mater. Sci. 39 (2004) 6153-6171.

Google Scholar

[11] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith and C.J. Dawes, G.B. Patent 9125978. 8. (1991).

Google Scholar

[12] H. Bisadi, A. Tavakoli, M.T. Sangsaraki and K.T. Sangsaraki, The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints, J. Mater. Des. 43 (2013).

DOI: 10.1016/j.matdes.2012.06.029

Google Scholar

[13] M.A. Mofid, A. Abdollah-Zadeh and F. Malek Ghaini, The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy, J. Mater. Des. 36 (2012) 161-167.

DOI: 10.1016/j.matdes.2011.11.004

Google Scholar

[14] M. Koilraj, V. Sundareswaran, S. Vijayan and S.R. Koteswara, Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083–Optimization of process parameters using Taguchi technique, J. Mater. Des. 42 (2012) 1-7.

DOI: 10.1016/j.matdes.2012.02.016

Google Scholar

[15] P. Dong, H. Li, D. Sun, W.B. Gong and J. Liu, Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy, J. Mater. Des. 45 (2013) 524-531.

DOI: 10.1016/j.matdes.2012.09.040

Google Scholar

[16] T. Prater, Friction stir welding of metal matrix composites for use in aerospace structures, J. Acta Astronaut. 93 (2014) 366-373.

DOI: 10.1016/j.actaastro.2013.07.023

Google Scholar

[17] M. Bahrami, K. Dehghani, M.K.B. Givi, A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique, J. Mater. Des. 53 (2014) 217-225.

DOI: 10.1016/j.matdes.2013.07.006

Google Scholar

[18] U. Patthi, M. Awang, F. Ahmad, AMA Rani and N. Ezinger, Study of physical and mechanical properties of aluminum 6092/SiC 25p/t6 friction Stir welded plate, J. Asian J. Scientific Research 6 (2013) 555-563.

DOI: 10.3923/ajsr.2013.555.563

Google Scholar

[19] B.L. Xiao, D. Wang, J. Bi, Z. Zhang and Z.Y. Ma, Friction stir welding of SiCp/Al composite and 2024 Al alloy, J. Mater. Sci. Forum 638 (2010) 1500-1505.

DOI: 10.4028/www.scientific.net/msf.638-642.1500

Google Scholar

[20] J.A. Lee, R.W. Carter, J. Ding, Friction stir welding for aluminum metal matrix composites (MMC's), J. NASA MSFC Alabama USA December1999 (1999).

Google Scholar

[21] Diwan R, Investigation of Friction Stir Welding of Al Metal Matrix Composite Materials, J. NASA (2002).

Google Scholar

[22] T. Prater, An investigation into the friction stir welding of Al 6061 and Al 6061/SiC/17. 5p using diamond coatings, D. Vanderbilt University (2008) 1-180.

Google Scholar

[23] J. Guo, P. Gougeon, X.G. Chen, Microstructure evolution and mechanical properties of dissimilar friction stir welded joints between AA1100-B4C MMC and AA6063 alloy, J. Mater. Sci. Eng. A 553 (2012) 149-156.

DOI: 10.1016/j.msea.2012.06.004

Google Scholar

[24] K.N. Krishnan, On the formation of onion rings in friction stir welds, J. Mater. Sci. Eng. A 327 (2002) 246–251.

DOI: 10.1016/s0921-5093(01)01474-5

Google Scholar

[25] K. Kumar, S.V. Kailas, The role of friction stir welding tool on material flow and weld formation, J. Mater. Sci. Eng. A 485 (2008) 367–374.

DOI: 10.1016/j.msea.2007.08.013

Google Scholar

[26] O. Lorrain, V. Favier, H. Zahrouni and D. Lawrjaniec, Understanding the material flow path of friction stir welding process using unthreaded tools, J. J. Mater. Process. Technol. 210 (2010) 603-609.

DOI: 10.1016/j.jmatprotec.2009.11.005

Google Scholar

[27] F. Gratecap, M. Girard, S. Marya and G. Racineux, Exploring material flow in friction stir welding: tool eccentricity and formation of banded structures, J. Int. J. Mater. Form 5 (2012) 99-107.

DOI: 10.1007/s12289-010-1008-5

Google Scholar

[28] B.L. Xiao, J. Bi, M.J. Zhao and Z.Y. Ma. Effects of SiCp size on tensile property of aluminum matrix composites fabricated by powder metallurgical method, J. Acta. Mech. Sinica 38 (2002) 1006-1008.

Google Scholar