[1]
B. Li, Y. Shen, A feasibility research on friction stir welding of a new-typed lap–butt joint of dissimilar Al alloys, J. Mater. Des. 34 (2012) 725-731.
DOI: 10.1016/j.matdes.2011.05.033
Google Scholar
[2]
D. Wang, B.L. Xiao, Q.Z. Wang and Z.Y. Ma, Friction stir welding of SiCp/2009Al composite plate, J. Mater. Des. 47 (2013) 243-247.
DOI: 10.1016/j.matdes.2012.11.052
Google Scholar
[3]
F. Cioffi, R. Fernández, D. Gesto, P. Rey, D. Verdera and G. González-Doncel, Friction stir welding of thick plates of aluminum alloy matrix composite with a high volume fraction of ceramic reinforcement, J. Composites Part A 54 (2013) 117-123.
DOI: 10.1016/j.compositesa.2013.07.011
Google Scholar
[4]
H.S. Lee, K.Y. Jeon, H.Y. Kim and S.H. Hong, Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications, J. J. Mater. Sci. 35 (2000) 6231-6236.
Google Scholar
[5]
J. Sadanandam, G. Bhikshamaiah, B. Gopalakrishna, S.V. Suryanarayana, Y.R. Mahajan and M.K. Jain, Effect of different reinforcements on the thermal expansion of 2124 aluminium metal-matrix composites, J. J. Mater. Sci. Lett. 11 (1992) 1518-1520.
DOI: 10.1007/bf00729277
Google Scholar
[6]
Y. Katoh, L.L. Snead, C.H. Henager Jr., A. Hasegawa, A. Kohyama, B, Riccardi and H. Hegeman, Current status and critical issues for development of SiC composites for fusion applications, J. J. Nucl. Mater. 367 (2007) 659-671.
DOI: 10.1016/j.jnucmat.2007.03.032
Google Scholar
[7]
R.H. Jones, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, B. Riccardi, L.L. Snead and W.J. Weber, Promise and challenges of SiCf/SiC composites for fusion energy applications, J. J. Nucl. Mater. 307 (2002) 1057-1072.
DOI: 10.1016/s0022-3115(02)00976-5
Google Scholar
[8]
D. Storjohann, O.M. Barabash, S.A. David, P.S. Sklad, E.E. Bloom and S.S. Babu. Fusion and Friction Stir Welding of Aluminum Metal Matrix Composites, J. Metall. Mater. Trans. A 36 (2005) 3237-3247.
DOI: 10.1007/s11661-005-0093-4
Google Scholar
[9]
R. García, V.H. López, A.R. Kennedy and G. Arias, Welding of Al-359/20% SiCp metal matrix composites by the novel MIG process with indirect electric arc (IEA), J. J. Mater. Sci. 42 (2007) 7794-7800.
DOI: 10.1007/s10853-007-1632-8
Google Scholar
[10]
H.Z. Ye, X.Y. Liu, Review of recent studies in magnesium matrix composites, J. J. Mater. Sci. 39 (2004) 6153-6171.
Google Scholar
[11]
W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith and C.J. Dawes, G.B. Patent 9125978. 8. (1991).
Google Scholar
[12]
H. Bisadi, A. Tavakoli, M.T. Sangsaraki and K.T. Sangsaraki, The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints, J. Mater. Des. 43 (2013).
DOI: 10.1016/j.matdes.2012.06.029
Google Scholar
[13]
M.A. Mofid, A. Abdollah-Zadeh and F. Malek Ghaini, The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy, J. Mater. Des. 36 (2012) 161-167.
DOI: 10.1016/j.matdes.2011.11.004
Google Scholar
[14]
M. Koilraj, V. Sundareswaran, S. Vijayan and S.R. Koteswara, Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083–Optimization of process parameters using Taguchi technique, J. Mater. Des. 42 (2012) 1-7.
DOI: 10.1016/j.matdes.2012.02.016
Google Scholar
[15]
P. Dong, H. Li, D. Sun, W.B. Gong and J. Liu, Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy, J. Mater. Des. 45 (2013) 524-531.
DOI: 10.1016/j.matdes.2012.09.040
Google Scholar
[16]
T. Prater, Friction stir welding of metal matrix composites for use in aerospace structures, J. Acta Astronaut. 93 (2014) 366-373.
DOI: 10.1016/j.actaastro.2013.07.023
Google Scholar
[17]
M. Bahrami, K. Dehghani, M.K.B. Givi, A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique, J. Mater. Des. 53 (2014) 217-225.
DOI: 10.1016/j.matdes.2013.07.006
Google Scholar
[18]
U. Patthi, M. Awang, F. Ahmad, AMA Rani and N. Ezinger, Study of physical and mechanical properties of aluminum 6092/SiC 25p/t6 friction Stir welded plate, J. Asian J. Scientific Research 6 (2013) 555-563.
DOI: 10.3923/ajsr.2013.555.563
Google Scholar
[19]
B.L. Xiao, D. Wang, J. Bi, Z. Zhang and Z.Y. Ma, Friction stir welding of SiCp/Al composite and 2024 Al alloy, J. Mater. Sci. Forum 638 (2010) 1500-1505.
DOI: 10.4028/www.scientific.net/msf.638-642.1500
Google Scholar
[20]
J.A. Lee, R.W. Carter, J. Ding, Friction stir welding for aluminum metal matrix composites (MMC's), J. NASA MSFC Alabama USA December1999 (1999).
Google Scholar
[21]
Diwan R, Investigation of Friction Stir Welding of Al Metal Matrix Composite Materials, J. NASA (2002).
Google Scholar
[22]
T. Prater, An investigation into the friction stir welding of Al 6061 and Al 6061/SiC/17. 5p using diamond coatings, D. Vanderbilt University (2008) 1-180.
Google Scholar
[23]
J. Guo, P. Gougeon, X.G. Chen, Microstructure evolution and mechanical properties of dissimilar friction stir welded joints between AA1100-B4C MMC and AA6063 alloy, J. Mater. Sci. Eng. A 553 (2012) 149-156.
DOI: 10.1016/j.msea.2012.06.004
Google Scholar
[24]
K.N. Krishnan, On the formation of onion rings in friction stir welds, J. Mater. Sci. Eng. A 327 (2002) 246–251.
DOI: 10.1016/s0921-5093(01)01474-5
Google Scholar
[25]
K. Kumar, S.V. Kailas, The role of friction stir welding tool on material flow and weld formation, J. Mater. Sci. Eng. A 485 (2008) 367–374.
DOI: 10.1016/j.msea.2007.08.013
Google Scholar
[26]
O. Lorrain, V. Favier, H. Zahrouni and D. Lawrjaniec, Understanding the material flow path of friction stir welding process using unthreaded tools, J. J. Mater. Process. Technol. 210 (2010) 603-609.
DOI: 10.1016/j.jmatprotec.2009.11.005
Google Scholar
[27]
F. Gratecap, M. Girard, S. Marya and G. Racineux, Exploring material flow in friction stir welding: tool eccentricity and formation of banded structures, J. Int. J. Mater. Form 5 (2012) 99-107.
DOI: 10.1007/s12289-010-1008-5
Google Scholar
[28]
B.L. Xiao, J. Bi, M.J. Zhao and Z.Y. Ma. Effects of SiCp size on tensile property of aluminum matrix composites fabricated by powder metallurgical method, J. Acta. Mech. Sinica 38 (2002) 1006-1008.
Google Scholar