Study of Surface-Enhanced Raman Spectroscopy of Crystal Violet in Acid Aqueous

Article Preview

Abstract:

We reported the spectra intensity of surface enhanced Raman scattering (SERS) for crystal violet with changing the acid concentration. The SERS signals of crystal violet ascended firstly and then descended with the acid concentration increasing when we put the nitric acid into the crystal violet-silver colloid system. The phenomenon was considered to be associated with the interaction between hydrogen ions and crystal violet, which may influenced the SERS signals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1989-1993

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. C. Lee, D. Meisel, Absorption and surface-enhanced Raman of dyes on silver and gold sols, J. Phys. Chem. 86(1982) 3391–3395.

DOI: 10.1021/j100214a025

Google Scholar

[2] S. Nie, S. R Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhance Raman Scattering, Science 275 (1997) 1102-1106.

DOI: 10.1126/science.275.5303.1102

Google Scholar

[3] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, Single Molecule Detection Using Surface- Enhanced Raman Scattering (SERS), Phys. Rev. Lett. 78 (1997) 1667-1670.

DOI: 10.1103/physrevlett.78.1667

Google Scholar

[4] Y. S. Li, J. C. Cheng, Y. Wang, Surface-enhanced Raman spectra of dyes and organic acids in silver solutions: chloride ion effect, Spectrochimica Acta A 56 (2000) 2067-(2072).

DOI: 10.1016/s1386-1425(00)00268-7

Google Scholar

[5] L. Guo, X. Zhang, Z. Du , Y. Huang, Y. Mo, The Charge Transfering between Silver Nanoparticles and R6G, Spectrosc. Spect. Anal. 21 (2001) 16-18.

Google Scholar

[6] S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, R. P. van Duyne, Single-Molecule Surface-Enhanced Raman Spectroscopy of Crystal Violet Isotopologues: Theory and Experiment, J. Am. Chem. Soc. 133 (2011).

DOI: 10.1021/ja110964d

Google Scholar

[7] R. Li, Z. Y. Guo, Z. F. Zhuang, K. Xiong, S. J. Chen, S. H. Liu, Quantitative Analysis of Crystal Violet by Raman Spectroscopy, Spectroscopy 27 (2012) 54-57.

Google Scholar

[8] B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, R. P. Van Duyne, SERS: Materials, applications, and the future, Mater. today 15 (2012) 16-25.

DOI: 10.1016/s1369-7021(12)70017-2

Google Scholar

[9] W. Xie, S. Schlücker, Medical applications of surface-enhanced Raman scattering, Phys. Chem. Chem. Phys. 15 (2013) 5329-5344.

DOI: 10.1039/c3cp43858a

Google Scholar

[10] P. Negri, K. T. Jacobs, O. O. Dada, Z. D. Schultz, Ultrasensitive Surface-Enhanced Raman Scattering Flow Detector Using Hydrodynamic Focusing, Anal. Chem. 85 (2013) 10159-10166.

DOI: 10.1021/ac401537k

Google Scholar

[11] L. Angeloni, G. Smulevich, M. P. Marzocchi, Resonance Raman Spectrum of Crystal violet, J. Raman Spectroscopy 8 (1979) 305-310.

DOI: 10.1002/jrs.1250080603

Google Scholar

[12] J. D. Jiang, E. Burstein, H. Kobayashi, Resonant Raman Scattering by Crystal-Violet Molecules Adsorbed on a Smooth Gold Surface: Evidence for a Charge-Transfer Excitation, Phys. Rev. Lett. 57 (1986) 1793-1796.

DOI: 10.1103/physrevlett.57.1793

Google Scholar

[13] E. J. Liang, C. Engert, W. Kiefer, Surface-enhanced Raman scattering of halide ions, pyridine and crystal violet on colloidal silver with near-infrared excitation: low-wavenumber vibrational modes, Vib. Spectrosc. 8 (1995) 435-444.

DOI: 10.1016/0924-2031(94)00078-u

Google Scholar

[14] Y. Du, Y. Fang, NIR-SERS Study on Crystal Violet Molecules at Acidic Conditions, Chin. J. Light Scattering 15 (2003) 131-138.

Google Scholar

[15] A. Kudelski, Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: Do dye molecules adsorb preferentially on highly SERS-active sites?, Chem. Phys. Lett. 414 (2005) 271-275.

DOI: 10.1016/j.cplett.2005.08.075

Google Scholar