Diversity and Distribution of Sulfate-Reducing Bacteria in Jilin Oilfield

Article Preview

Abstract:

To better understand the roles of microorganisms in oil production, diversity and distribution of microbes in Jilin oilfield was studied. Firstly, chromosomal DNA wassuccessfully extracted directly from crude oil samples. Diversity and distribution of microbes was then analyzed based on 16S rDNA libraries. There were totally 21 OTUs were obtained through 16S rDNA sequencing. Of those OTUs, 13 are bacteria in which Proteobacteria is the major family, while 8 are archaea in which Methanomicrobia is the dominant. Finally, SRB was found in all samples by amplifying the apsA gene using PCR. SRB found in Jilin oil samples belong to δ-Proteobacteria.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-302

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Magot, B. Ollivier, and B.K.C. Patel, Microbiology of petroleum reservoir, Anton. Van. Lee. 77 (2000) 103-116.

Google Scholar

[2] J.D. Van Hamme, A. Singh, and O.P. Ward, Recent adcances in petroleum microbiology, Microbiol. Mol. Biol. Rev. 67 (2003) 503-549.

DOI: 10.1128/mmbr.67.4.503-549.2003

Google Scholar

[3] C.M. Aitken, D.M. Jones, and S.R. Larter, Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs, Nature. 431 (2004) 291-294.

DOI: 10.1038/nature02922

Google Scholar

[4] J.C. Philp, A.S. Whiteley, L. Ciric, M.J. Bailey, Monitoring bioremediation, in R.M. Atlas and J.C. Philp (Eds), Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup, ASM Press., Washington, DC, USA, 2005, pp.237-268.

DOI: 10.1128/9781555817596.ch6

Google Scholar

[5] V.M. Oliveira, L.D. Sette, K.C.M. Simioni, E.V. doa Santos Neto, Bacterial diversity characterization in petroleum samples from Brazilian reservoirs, Braz. J. Microbiol. 39 (2008) 445-452.

DOI: 10.1590/s1517-83822008000300007

Google Scholar

[6] I. von der Weid, E. Korenblum, D. Jurelevicius, et al. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil, J. Microbiol. Biotechnol. 18 (2008) 5-14.

Google Scholar

[7] E. Korenblum, E. Valoni, M. Penna, L. Seldin, Bacterial diversity in water injection systems of Brazilian offshore oil platforms, Appl. Microbiol. Biotechnol. 85 (2010) 791-800.

DOI: 10.1007/s00253-009-2281-4

Google Scholar

[8] G. Muyzer and A.J.M. Stams, The ecology and biotechnology of Sulphate-reducing bacteria, Nat. Rev. Microbiol. 6 (2008) 441-454.

DOI: 10.1038/nrmicro1892

Google Scholar

[9] S.M. Keith, R.A. Herbert, C.G. Harfoot, Isolation of new types of Sulphate-reducing bacteria from estuarine and marine sediments using chemostat enrichments, J. Appl. Bacteriol. 53 (1982) 29-33.

DOI: 10.1111/j.1365-2672.1982.tb04731.x

Google Scholar

[10] R.J. Parkes, G.R. Gibson, I. Mueller-Harvey, W.J. Buckingham, R. Herbert, Determination of the substrates for Sulphate-reducing bacteria within marine and estuarine sediments with different rates of Sulphate reduction, J. Gen. Microbiol. 135 (1989).

DOI: 10.1099/00221287-135-1-175

Google Scholar

[11] F. Bak and N. Pfennig, Sulfate-reducing bacteria in littoral sediment of Lake Constance, FEMS Microbiol. Ecol. 85 (1991) 43-52.

DOI: 10.1111/j.1574-6968.1991.tb04696.x

Google Scholar

[12] P. Caumette, Ecology and physiology of phototrophic bacteria and Sulphate-reducing bacteria in marine salterns, Experientia. 49 (1993) 473-481.

DOI: 10.1007/bf01955148

Google Scholar

[13] J.R. Postgate, The Sulphate-Reducing Bacteria, Cambridge U. Press. London (1984).

Google Scholar

[14] F. Widdel, and N. Pfennig, Bergey's Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore 1 (1984) 663-679.

Google Scholar

[15] R. Cord-Ruwisch, W. Kleinitz, and F. Widdel, Sulfate-Reducing Bacteria and Their Activities in Oil Production, J. Pet. Technol. 39 (1987) 97-106.

DOI: 10.2118/13554-pa

Google Scholar

[16] V.D.W. Irene, E. Korenblum, D. Jurelevicius, A.S. Rosado, R. Dino, G.V. Sebastian, L. Seldin, Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Broazil, J. Microbiol. Biotechnol. 18 (2008).

Google Scholar

[17] D.J. Lane, 16S/23S rRNA sequencing, In: Stackebrandt E, Goodfellow M (Eds. ), Nucleic acids techniques in Bacterial systematics, John Wiley & Sons, Chichester, 1991, pp.115-147.

Google Scholar

[18] H. Heuer, M. Krsek, P. Baker, K. Smalla, E.M. Wellington, Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients, Appl. Environ. Microbiol. 63 (1997).

DOI: 10.1128/aem.63.8.3233-3241.1997

Google Scholar

[19] M. Zaballos, A. Lopez-Lopez, L. Ovreas, et al. Comparison of prokaryotic diversity at offshore oceanic locations reveals a different microbiota in the Mediterranean Sea, FEMS. Microbiol. Ecol. 56 (2006) 389-405.

DOI: 10.1111/j.1574-6941.2006.00060.x

Google Scholar

[20] J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic. Acids. Research. 25 (1997) 4876-4882.

DOI: 10.1093/nar/25.24.4876

Google Scholar

[21] R. Kondo, D.B. Nedwell, K.J. Purdy, S.Q. Silva, Detection and enumeration of Sulphate-reducing bacteria in estuarine sediments by competitive PCR, Geomicrobiol. J. 21 (2004) 145-157.

DOI: 10.1080/01490450490275307

Google Scholar

[22] J. Leloup, A. Loy, N.J. Knob, C. Borowski, M. Wagner, B.B. Jorgensen, Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea, Environ. Microbiol. 9 (2007) 131-142.

DOI: 10.1111/j.1462-2920.2006.01122.x

Google Scholar

[23] L. Zhao, T. Ma, M. Gao, P. Gao, M. Gao, X. Zhu, G. Li, Characterization of microbial diversity and community in water flooding oil reservoirs in China, World. J. Microb. Biot. 28 (2012) 3039-3052.

DOI: 10.1007/s11274-012-1114-2

Google Scholar

[24] K. Mori, H. Kim, T. Kakegawa, S. Hanada, A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. Nov., Thermodesulfobiumnarugense, gen. nov., sp. Nov., a new thermophilic isolate from a hot spring, Exremophiles. 7 (2003).

DOI: 10.1007/s00792-003-0320-0

Google Scholar