Cultivation and Regulation of Sulfate-Reducing Bacteria in Oilfield

Article Preview

Abstract:

To better regulate (up and down) the activation of SRB thereby contributing to EOR, efficiency of growth and inhibition of SRB was studied in this paper.Six different growth media were tested in total.The optimal growth media were selected based on growth rate and variations of pH between the start and end point of growth. Of the six media, complex I was selected as the best medium in which SRB grew to stationary-phase in less than 8 days with the highest cells’ concentration. Finally, the effects of NO3- on growth and persistence of SRB were studied by using abroad range concentrations of NO3-. The result indicated that SRB growth could be significantly inhibited at NO3- of 80 mM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

303-307

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Muyzer and A.J.M. Stams, The ecology and biotechnology of Sulphate-reducing bacteria, Nat. Rev. Microbiol. 6 (2008) 441-454.

DOI: 10.1038/nrmicro1892

Google Scholar

[2] S.M. Keith, R.A. Herbert, C.G. Harfoot, Isolation of new types of Sulphate-reducing bacteria from estuarine and marine sediments using chemostat enrichments, J. Appl. Bacteriol. 53 (1982) 29-33.

DOI: 10.1111/j.1365-2672.1982.tb04731.x

Google Scholar

[3] R.J. Parkes, G.R. Gibson, I. Mueller-Harvey, W.J. Buckingham, R. Herbert, Determination of the substrates for Sulphate-reducing bacteria within marine and estuarine sediments with different rates of Sulphate reduction, J. Gen. Microbiol. 135 (1989).

DOI: 10.1099/00221287-135-1-175

Google Scholar

[4] F. Bak and N. Pfennig, Sulfate-reducing bacteria in littoral sediment of Lake Constance, FEMS Microbiol. Ecol. 85 (1991) 43-52.

DOI: 10.1111/j.1574-6968.1991.tb04696.x

Google Scholar

[5] P. Caumette, Ecology and physiology of phototrophic bacteria and Sulphate-reducing bacteria in marine salterns, Experientia. 49 (1993) 473-481.

DOI: 10.1007/bf01955148

Google Scholar

[6] J.R. Postgate, TheSulphate-Reducing Bacteria, Cambridge U. Press. London (1984).

Google Scholar

[7] F. Widdel, and N. Pfennig, Bergey's Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore 1 (1984) 663-679.

Google Scholar

[8] R. Cord-Ruwisch, W. Kleinitz, and F. Widdel, Sulfate-Reducing Bacteria and Their Activities in Oil Production, J. Pet. Technol. 39 (1987) 97-106.

DOI: 10.2118/13554-pa

Google Scholar

[9] A. Suarez-Suarez, A. Lopez-Lopez, A. Tovar-Sanchez, P. Yarza, A. Orfila, J. Terrados, J. Arnds, S. Marques, H. Niemann, P. Schmitt-Kopplin, R. Amann, R. Rossello-Mora, Response of sulfate-reducing bacteria to an artificial oil-spill in a coastal marine sediment, Environ. Microbiol. 13 (2011).

DOI: 10.1111/j.1462-2920.2011.02451.x

Google Scholar

[10] M. Rzeczycka, and M. Blaszczyk, Growth and activity of Sulphate-reducing bacteria in media containing phosphogypsum and different sources of carbon, Pol. Environ. Stud. 14 (2005) 891-895.

Google Scholar

[11] G.E. Jenneman, M.J. McInerney, and R.M. Knapp, Effect of nitrate on biogenic sulfide production, Appl. Environ. Microbiol. 51 (1986) 1205-1211.

DOI: 10.1128/aem.51.6.1205-1211.1986

Google Scholar

[12] I. Davidova, M.S. Hicks, P.M. Fedorak, J.M. Duflita, The influence of nitrate on microbial processes in oil industry production waters, J. Ind. Microbiol. Biotechnol. 27 (2001) 80-86.

DOI: 10.1038/sj.jim.7000166

Google Scholar

[13] Q. He, Z. He, D.C. Joyner, M. Joachimiak, M.N. Price, Z.K. Yang, H.C.B. Yen, C.L. Hemme, W. Chen, M.M. Fields, D.A. Stahl, J.D. Keasling, M. Keller, A.P. Arkin, T.C. Hazen, J.D. Wall, J. Zhou, Impact of elevated nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio vulgaris, ISME. J. 4 (2010).

DOI: 10.1038/ismej.2010.59

Google Scholar

[14] R.J. Parkes, N.J.E. Dowling, D.C. White, R.A. Herbert, G.R. Gibson, Characterization of sulphate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction, FEMS. Microbiol. Ecol. 102 (1993).

DOI: 10.1111/j.1574-6968.1993.tb05815.x

Google Scholar

[15] D. Shao, Y. Kang, A. Wu, M.H. Wong, Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments, Sci. Total. Environ. 424 (2012) 331-336.

DOI: 10.1016/j.scitotenv.2011.09.042

Google Scholar

[16] K.T. Finneran, M.E. Housewright, and D.R. Lovley, Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments, Environ. Microbiol. 4 (2002) 510-516.

DOI: 10.1046/j.1462-2920.2002.00317.x

Google Scholar

[17] J.D. Istok, J.M. Senko, L.R. Krumholz, et al. In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer, Environ. Sci. Technol. 38 (2004) 468-475.

DOI: 10.1021/es034639p

Google Scholar

[18] J.L. Nyman, T.L. Marsh, M.A. Ginder-Vogel, M. Gentile, S. Fendorf, C. Criddle, Heterogeneous response to biostimulation for U (VI) reduction in replicated sediment microcosms, Biodegradation. 17 (2006) 303-316.

DOI: 10.1007/s10532-005-9000-3

Google Scholar

[19] E.A. Greene, C. Hubert, M. Nemati, G.E. Jenneman, G. Voordouw, Nitrite reductase activity of sulfate-reducing bacteria prevents their inhibition by nitrate-reducing, sulfide-oxidizing bacteria, Environ. Microbiol. 5 (2003) 607-617.

DOI: 10.1046/j.1462-2920.2003.00446.x

Google Scholar

[20] S.A. Haveman, E.A. Greene, C.P. Stilwell, J.K. Voordouw, G. Voordouw, Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite, J. Bacteriol. 186 (2004) 7944-7950.

DOI: 10.1128/jb.186.23.7944-7950.2004

Google Scholar