Green Synthesis of Silver Nanoparticles by Haloarchaeon Halococcus salifodinae BK6

Article Preview

Abstract:

Nanobiotechnology is a multidisciplinary branch of nanotechnology which includes fabrication of nanosized materials using biological approaches. Highly structured metallic and metal sulfide nanoparticles have been reported to be synthesized by numerous bacteria, fungi, yeasts and viruses. However, biosynthesis of nanoparticles by Haloarchaea (salt-loving archaea) of the third domain of life, Archaea, is in its nascent stages. In this study, we report the intracellular synthesis of stable, mostly spherical silver nanoparticles (SNPs) by the haloarchaeal isolate Halococcus salifodinae BK6. The isolate adapted to silver nitrate was found to exhibit growth kinetics similar to that of cells unexposed to silver nitrate. The nitrate reductase enzyme assay and the enzyme inhibitor studies showed the involvement of NADH dependent nitrate reductase in silver tolerance, reduction, and synthesis of SNPs. UV visible spectroscopy, XRD, TEM and EDAX were used for characterization of SNPs. The XRD exhibited characteristic Bragg peaks of face centered cubic silver with crystallite domain size of 26 nm and 12 nm for SNPs synthesized in NTYE and halophilic nitrate broth, respectively. TEM analysis exhibited an average particle size of 50.3 nm and 12 nm for SNPs synthesized in NTYE and halophilic nitrate broth (HNB), respectively. The as synthesized SNPs exhibited antimicrobial activity against both Gram positive and Gram negative organisms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-241

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surf. B, 28 (2003) 313-318.

DOI: 10.1016/s0927-7765(02)00174-1

Google Scholar

[2] M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S.K. Kulkarni, K.M. Paknikar, Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3, Nanotechnology, 14 (2003) 95-100.

DOI: 10.1088/0957-4484/14/1/321

Google Scholar

[3] M. Lengke, M. Fleet, G. Southam, Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex, Langmuir, 10 (2006) 1021-1030.

DOI: 10.1021/la0613124

Google Scholar

[4] X. Jianping, Y.L. Jim, I.C.W. Daniel, P.T. Yen, Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions, Small, 3 (2007) 668-672.

DOI: 10.1002/smll.200600612

Google Scholar

[5] P. Srivastava, J. Bragança, S.R. Ramanan, M. Kowshik, Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3, Extremophiles, 17 (2013) 821-831.

DOI: 10.1007/s00792-013-0563-3

Google Scholar

[6] B. Zafrilla, R.M. Martínez-Espinosa, M.A. Alonso, M.J. Bonete, Biodiversity of Archaea and floral of two inland saltern ecosystems in the Alto Vinalopó Valley, Spain, Saline Syst., 6 (2010) 10 (doi: 10. 1186/1746-1448-6-10).

DOI: 10.1186/1746-1448-6-10

Google Scholar

[7] P. Srivastava, M. Kowshik Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea, 2013 (2013) 16 (doi: 10. 1155/2013/732864).

DOI: 10.1155/2013/732864

Google Scholar

[8] R. Joerger, T. Klaus, C.G. Granqvist, Biologically produced silver-carbon composite materials for optically functional thin-film coatings, Adv. Mater., 12 (2000) 407-409.

DOI: 10.1002/(sici)1521-4095(200003)12:6<407::aid-adma407>3.0.co;2-o

Google Scholar

[9] T. Vo-Dinh, Nanobiosensing using plasmonic nanoprobes, IEEE J. Sel. Topics Quantum Electron, 14 (2008) 198-205.

DOI: 10.1109/jstqe.2007.914738

Google Scholar

[10] F. Furno, K.S. Morley, B. Wong, B.L. Sharp,  P.L. Arnold, S. M/ Howdle, R. Bayston, P.D. Brown, P.D. Winship, Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J. Antimicrob. Chemother., 54 (2004).

DOI: 10.1093/jac/dkh478

Google Scholar

[11] F. Ramezani, M. Ramezani, S. Talebi, Mechanistic aspects of biosynthesis of nanoparticles by several microbes, Nanocon., 10 (2010) 12-14.

Google Scholar

[12] K. Mani, B.B. Salgaonkar, J.M. Braganca, Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India, Aquatic Biosystems, 8 (2012) 15 (doi: 10. 1186/2046-9063-8-15).

DOI: 10.1186/2046-9063-8-15

Google Scholar

[13] S.M. Harley, Use of a simple, colorimetric assay to demonstrate conditions for induction of nitrate reductase in plants, Am. Biol. Teach., 55 (1993) 161-164.

DOI: 10.2307/4449615

Google Scholar

[14] R. Vaidyanathan, S. Gopalram, K. Kalishwaralal, V. Deepak, S.R. Pandian, S. Gurunathan, Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity, Colloids Surf. B, 75 (2010) 335-41.

DOI: 10.1016/j.colsurfb.2009.09.006

Google Scholar

[15] V. Deepak, K. Kalishwaralal, S.R. Pandian, S. Gurunathan, An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up, in: M. Rai, N. Durán (Eds. ), Metal nanoparticles in microbiology, Springer-Verlag Berlin Heidelberg, 2011 pp.17-35.

DOI: 10.1007/978-3-642-18312-6_2

Google Scholar

[16] M.M.G. Babu, J. Sridhar, P. Gunasekaran, Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress, J. Nanobiotechnology, 9 (2011) 49 (doi: 10. 1186/1477-3155-9-49).

DOI: 10.1186/1477-3155-9-49

Google Scholar

[17] J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Antimicrobial effects of silver nanoparticles, Nanomedicine, 3 (2007) 95-101.

DOI: 10.1016/j.nano.2006.12.001

Google Scholar

[18] M. Guzman, J. Dille, S. Godet, Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria, Nanomed- Nanotechnol. Biol. Med., 8 (2012) 37-45.

DOI: 10.1016/j.nano.2011.05.007

Google Scholar