Hydrogen Peroxide Sensor Based on Carbon Nanotubes - Poly(celestine blue) Nanohybrid Modified Electrode

Article Preview

Abstract:

A hydrogen peroxide sensor was developed by constructing a conductive film of poly (celestine blue) (PCB) on multiwalled carbon nanotubes (MWCNTs) modified graphite electrode by electropolymerization. The presence of MWCNTs increased the surface coverage concentration of PCB and the rate of electron transfer. Scanning electron microscopy (SEM) was used to characterize the surface morphology of the modified electrode. The electrochemical characteristics of PCB/MWCNTs modified electrode was evaluated by cyclic voltammetry and chronoamperometry. The results revealed that the modified electrode exhibits higher electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in 0.1M of NH4NO3 (pH 7) at a reduced overpotential with increased peak currents. The modified electrode showed a wide concentration range from 6.66×10-6 M to 1.34×10-3M with a detection limit of 2.22×10-6 M (S/N = 3) and with a sensitivity of 12.592 μA/μM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

263-268

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gregory G. Wildgoose, Craig E. Banks, Henry C. Leventis, and Richard G. Compton, Chemically Modified Carbon Nanotubes for Use in Electroanalysis, Microchim. Acta, 152 (2006) 187-214.

DOI: 10.1007/s00604-005-0449-x

Google Scholar

[2] Gooding, J. J, Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing Electrochim. Acta, 50 (2005) 3049 -3060.

DOI: 10.1016/j.electacta.2004.08.052

Google Scholar

[3] Lin Y, Yantasee W, Wang J, Carbon nanotubes (CNTs) for the development of electrochemical biosensors, J. Front. Biosci., 10 (2005) 492-505.

DOI: 10.2741/1545

Google Scholar

[4] S. Iijima, Helical microtubes of graphitic carbon, Nature, 354 (1991) 56-58.

Google Scholar

[5] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications, Science, 297 (2002) 787-792.

DOI: 10.1126/science.1060928

Google Scholar

[6] Robert J. Chen, Yuegang Zhang, Dunwei Wang, and Hongjie Dai, Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization, J. Am. Chem. Soc., 123 (2001) 3838 - 3839.

DOI: 10.1021/ja010172b

Google Scholar

[7] A. Merkoci, Carbon nanotubes in analytical sciences review, Microchim. Acta, 152 (2006) 157-174.

Google Scholar

[8] J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing, Electrochim. Acta, 50 (2005) 3049-3060.

DOI: 10.1016/j.electacta.2004.08.052

Google Scholar

[9] A. Merkoci, M. Pumera, X. Llopis, B. Perez, M. del Valle, S. Alegret, Newmaterials for electrochemical sensing VI: carbon nanotube, Trends Anal. Chem., 24 (2005) 826 - 838.

DOI: 10.1016/j.trac.2005.03.019

Google Scholar

[10] MacDiarmid, A. G. Synthetic Metals,: A Novel Role for Organic Polymers (Nobel Lecture) Copyright(c) The Nobel Foundation 2001. We thank the Nobel Foundation, Stockholm, for permission to print this lecture, Angew. Chem., Int. Ed., 40 (2001).

DOI: 10.1002/1521-3773(20020617)41:12<1998::aid-anie1998>3.0.co;2-8

Google Scholar

[11] Heeger, A. J, Semiconducting and metallic polymers: the fourth generation of polymeric materials J. Phys. Chem. B, 105 (2001) 8475-8491.

DOI: 10.1021/jp011611w

Google Scholar

[12] Hongying Liu, Guangfeng Wang, Daolei Chen, Wei Zhang, Chunjing Li, Bin Fang, Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA, J. Electroanal. Chem., 595 (2006) 152-160.

DOI: 10.1016/j.snb.2007.06.028

Google Scholar

[13] Umasankar Yogeswaran, Shen-Ming Chen, Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid, Sens. Actuators B, 130 (2008).

DOI: 10.1016/j.snb.2007.10.040

Google Scholar

[14] Yan-Li Yao, Kwok-Keung Shiu, Low potential detection of glucose at carbon nanotube modified glassy carbon electrode with electropolymerized poly(toluidine blue O) film, Electrochim. Acta, 53 (2007) 278-284.

DOI: 10.1016/j.electacta.2007.04.007

Google Scholar

[15] An amperometric hydrogen peroxide biosensor based on the immobilization of HRP on multi-walled carbon nanotubes/electro-copolymerized nano-Pt-poly(neutral red) composite membrane, Yuyong Zhang, Ruo Yuan, Yaqin Chai, Yun Xiang, Chenglin Hong, Xiaoqi Ran, Biochem. Eng. J., 51 (2010).

DOI: 10.1016/j.bej.2010.06.001

Google Scholar

[16] F. Ricci, A. Amine, D. Moscone, G. Polleschi, Prussian Blue Modified Carbon Nanotube Paste Electrodes: A Comparative Study and a Biochemical Application, Anal. Lett., 36 (2003) 1921 - (1938).

DOI: 10.1081/al-120023622

Google Scholar