Silver Nanoparticles on Zinc Oxide: An Approach to Plasmonic PV Solar Cell

Article Preview

Abstract:

Efficient light management in solar cells can be achieved by incorporating plasmonic nanoscatterers that support surface plasmons: excitations of conduction electrons at the interface/surface. As known, light trapping increases the amount of light absorbed by bouncing the light within the cell, giving it a chance to be absorbed thereby increasing the absorption and scattering cross-section. The challenge is to fabricate these plasmonic nanoparticles in cost-effective method as well as without hampering optical, electrical and topographical properties of underneath layers. Here in this report a simple two step method was adopted to fabricate silver nanoparticles on zinc oxide followed by topographic and elemental analysis thereof. Numerical calculation was carried out to elucidate optical scattering of silver nanoparticles of various sizes as well as that of dimer. Near-electric field distribution of single silver nanoparticles and dimer along with the individual component of electric field was simulated by finite different time domain analysis. Using the benefit of increased scattering cross-section and ease of such nanoparticles fabrication, a cell configure is proposed herewith.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

280-285

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Kreibig, M. Vollmer, Optical properties of metal clusters, Springer-Verlag, Berlin, (1995).

Google Scholar

[2] E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells, IEEE Trans. Electr. Dev. 29 (1982) 300–305.

DOI: 10.1109/t-ed.1982.20700

Google Scholar

[3] H.W. Deckman, C.B. Roxlo, E. Yablonovitch, Maximum statistical increase of optical absorption in textured semiconductor films, Opt. Lett. 8 (1983) 491–493.

DOI: 10.1364/ol.8.000491

Google Scholar

[4] B. Rech, H. Wagner, Potential of amorphous silicon for solar cells, App. Phys. A 69 (1999) 155–167.

Google Scholar

[5] D.S. Shen, H. Chatham, P.K. Bhat, High-deposition-rate amorphous silicon solar cells: Silane or Disilane?, Solar Cells 30 (1991) 271-275.

DOI: 10.1016/0379-6787(91)90059-x

Google Scholar

[6] H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mat. 9 (2010) 205-213.

Google Scholar

[7] M.K. Hossain, Y. Kitahama, G.G. Huang, T. Kaneko, Y. Ozaki, SPR and SERS characteristics of gold nanoaggregates with different morphologies, App. Phys. B 93 (2008) 165-170.

DOI: 10.1007/s00340-008-3193-1

Google Scholar

[8] K. Imura, H. Okamoto, M.K. Hossain, M. Kitajima, Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites, Nano Lett. 6 (2006) 2173-2176.

DOI: 10.1021/nl061650p

Google Scholar

[9] J.R. Nagel, M.A. Scarpulla, Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles, Opt. Express 18 (2010) A139-A146.

DOI: 10.1364/oe.18.00a139

Google Scholar

[10] S.H. Lim, W. Mar, P. Matheu, D. Derkacs, E.T. Yu, " Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles, J. of App. Phy. 101 (2007) 104309-104307.

DOI: 10.1063/1.2733649

Google Scholar

[11] O.L. Muskens, J.G. Rivas, R.E. Algra, E.P.A. M. Bakkers, A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications, Nano Lett. 8 (2008) 2638-2642.

DOI: 10.1021/nl0808076

Google Scholar

[12] M.K. Hossain, Y. Kitahama, V.P. Biju, T. Kaneko, T. Itoh, Y. Ozaki, Surface plasmon excitation and surface-enhanced Raman scattering using two-dimensionally close-packed gold nanoparticles, J. Phys. Chem. C 113 (2009) 11689-11694.

DOI: 10.1021/jp901635d

Google Scholar

[13] V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, Opt. Express 18, A237-A245, (2010).

DOI: 10.1364/oe.18.00a237

Google Scholar

[14] M.K. Hossain, T. Shimada, M. Kitajima, K. Imura, H. Okamoto, Near-field Raman imaging and electromagnetic field confinement in the self-assembled monolayer array of gold nanoparticles, Langmuir 24 (2008) 9241-9244.

DOI: 10.1021/la8001543

Google Scholar

[15] M. K. Hossain, T. Shimada, M. Kitajima, K. Imura and H. Okamoto, Raman and near‐field spectroscopic study on localized surface plasmon excitation from the 2D nanostructure of gold nanoparticles, J. Microsc. 229 (2008) 327-330.

DOI: 10.1111/j.1365-2818.2008.01908.x

Google Scholar

[16] V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Plasmonic nanostructure design for efficient light coupling into solar cells, Nano Lett. 8 (2008) 4391-4397.

DOI: 10.1021/nl8022548

Google Scholar

[17] W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, F. Bartoli, Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics, Opt. Express 18 (2010) A620-A630.

DOI: 10.1364/oe.18.00a620

Google Scholar

[18] C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particle, John Wiley & Sons, New York, (1983).

Google Scholar

[19] V. Myroshnychenko, J.R. Fernández, I.P. Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J.G. Abajo, Modelling the optical response of gold nanoparticles, Chem. Soc. Rev. 37 (2008) 1792-1805.

DOI: 10.1039/b711486a

Google Scholar

[20] F.J.G. Abajo, Multiple scattering of radiation in clusters of dielectrics, Phys. Rev. B 60 (1999) 6086-6102.

DOI: 10.1103/physrevb.60.6086

Google Scholar

[21] S. Dengler, C. Kübel, A. Schwenke, G. Ritt, B. Eberle, Near- and off-resonant optical limiting properties of gold–silver alloy nanoparticles for intense nanosecond laser pulses, J. Opt. 14 (2012) 075203-075210.

DOI: 10.1088/2040-8978/14/7/075203

Google Scholar

[22] Q.A. Drmosh, M.K. Hossain, F. Al Harabi, N. Tabet, Properties of post annealed Ag/ZnO thin films, submitted in J. Vac. Sci. & Tech. A.

Google Scholar