Effect of Heat Treatment on Structural, Magnetic and Electric Properties of Z-Type Barium Cobalt Hexaferrite Powder

Article Preview

Abstract:

Z-type hexaferrite with composition Ba3Co2Fe24O41 has been synthesized using a sol-gel auto combustion technique. The obtain combusted powder was sintered at 500 OC and followed by 950 OC for 4 hrs in a muffle furnace. The effect of different sintering temperature on crystal structure, crystallite size, microstructure and dielectric properties were systematically investigated. The prepared barium cobalt hexaferrite powder samples were characterized using different experimental techniques like FTIR, XRD, AC conductivity and specific magnetization measurements. It was observed from XRD results that heat treatment conditions play significant role in the formation of hexaferrite phase. AC conductivity measurements were carried out at room temperature in frequency range of 20Hz to 2MHz. All the samples show the frequency dependent phenomena, i.e. the AC conductivity increases with increasing frequency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-29

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.J. Went, G.W. Rathenau, E.W. Gorter, G.W. Van Oosterhaut, Phil. Tech. Rev. 13 (1952) 194.

Google Scholar

[2] H. Jonker, H.P. Wijn, P.B. Braun, Phil. Tech. Rev. 18 (1956) 154.

Google Scholar

[3] J. Smit, H.P.J. Wijn, Ferrites, Philips Technical Library, Eindhoven, 1956, p.204–207.

Google Scholar

[4] X.H. Wang, L.T. Li, S.Y. Su, Z.L. Gui, J. Am. Ceram. Soc. 88 (2005) 478–480.

Google Scholar

[5] J.J. Xu, C.M. Yang, H.F. Zou, Y.H. Song, G.M. Gao, B.C. An, S.C. Gan, J. Magn. Magn. Mater. 321 (2009) 3231–3235.

Google Scholar

[6] G. Albanese, Journal De Physique, Colloque C1, supplyment au no 4, Tome 38, Avril 1977, page C1-85.

Google Scholar

[7] L. Jia, Y. Tang, H. Zhang, P. Deng, Y. Liu, B. Liu, Jpn. J. Appl. Phys. 49 (2010) 063001.

Google Scholar

[8] K. Kamishima, J. Magn. Magn. Mater. 312 (2007) 228–233.

Google Scholar

[9] M. R. Barati, J. Sol-Gel Sci. Technol. 52 (2009) 171–178.

Google Scholar

[10] X. Jiao, D. Chen, Y. Hu, Mater. Res. Bull. 37 (2002) 1583.

Google Scholar

[11] C. Hwang, J. Tsai, T. Huang, Mate. Chem. Phys., 110 (2005) 1-7.

Google Scholar

[12] C. H. Peng, C. Hwang, S. Chen, Mater. Sci. Eng. B 107 (2004) 295.

Google Scholar

[13] D. H. Chen, X. R. He, Mater. Res. Bull. 36 (2001)1369.

Google Scholar

[14] M. Mouallem-bahout, S. Bertrand, O. Pena, J. Solid State Chem. 178 (2005) 1080.

Google Scholar

[15] A. Verma, T. C. Goel, R. G. Mendiratta, J. Magn. Magn. Mater. 208 (2000) 13.

Google Scholar

[16] Q. Chen, A. J Rondinone, B. C. Chakoumakos, J. Magn. Magn. Mater. 194 (1999) 1.

Google Scholar

[17] B. L. Bischoff, M. A. Anderson, Chem. Mater. 7 (1995) 1772.

Google Scholar

[18] C. C. Wang, J. Y. Ying, Chem. Mater. 11 (1999) 3113.

Google Scholar

[19] V. J. árik, A. Grusková, J. Sláma, R. Dosoudil, A. González, G. Mendoza, Advances in Electrical and Electronic Engineering (2011) pp.344-346.

Google Scholar

[20] A. Katoch, A. Singh, International Journal of Enhanced Research in Science Technology & Engineering 2 (2013) 1-7.

Google Scholar

[21] A.K. Jonscher, Dielectric Relaxation in Solids, Chelsa Dielectrics, London, (1983).

Google Scholar

[22] M. Hashim , Ceram. Int. 39 (2013) 1807–1819.

Google Scholar

[23] M.A. El Hitti, J. Magn. Magn. Mater. 164 (1996) 187.

Google Scholar

[24] A.M. Bhavikatti, International Journal of Engineering Science and Technology 2(11) ( 2010) 6532-6539.

Google Scholar

[25] M. Penchal Reddy, W. Madhuri, G. Balakrishnaiah, N. Ramamanohar Reddy, K.V. SivaKumar, V. R. K. Murthy, M. Hashim, Ceram. Int. 39(2013)1807–1819.

Google Scholar