[1]
S. Iijima, Helical microtubulates of graphitics carbon, Nature, vol 354, no. 6348, pp.56-58, (1991).
Google Scholar
[2]
F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chemical Physics Letters, vol. 370, no. 5–6, p.820–824, Mar. (2003).
DOI: 10.1016/s0009-2614(03)00187-8
Google Scholar
[3]
Z. Ounaies, Electrical properties of single wall carbon nanotube reinforced polyimide composites, Composites Science and Technology, vol. 63, no. 11, p.1637–1646, Aug. (2003).
DOI: 10.1016/s0266-3538(03)00067-8
Google Scholar
[4]
Z. J. Han, B. K. Tay, M. Shakerzadeh, and K. Ostrikov, Superhydrophobic amorphous carbon/carbon nanotube nanocomposites, Applied Physics Letters, vol. 94, no. 22, p.223106, (2009).
DOI: 10.1063/1.3148667
Google Scholar
[5]
Y. H. Wang, J. Lin, C. H. a. Huan, and G. S. Chen, Synthesis of large area aligned carbon nanotube arrays from C[sub 2]H[sub 2]–H[sub 2] mixture by rf plasma-enhanced chemical vapor deposition, Applied Physics Letters, vol. 79, no. 5, p.680, (2001).
DOI: 10.1063/1.1390314
Google Scholar
[6]
Y. Wang and J. T. W. Yeow, A Review of Carbon Nanotubes-Based Gas Sensors, Journal of Sensors, vol. 2009, p.1–24, (2009).
Google Scholar
[7]
T. M. Minea, S. Point, a. Gohier, a. Granier, C. Godon, and F. Alvarez, Single chamber PVD/PECVD process for in situ control of the catalyst activity on carbon nanotubes growth, Surface and Coatings Technology, vol. 200, no. 1–4, p.1101–1105, Oct. (2005).
DOI: 10.1016/j.surfcoat.2005.01.053
Google Scholar
[8]
C. Lan, P. Srisungsitthisunti, P. B. Amama, T. S. Fisher, X. Xu, and R. G. Reifenberger, Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation., Nanotechnology, vol. 19, no. 12, p.125703, Mar. (2008).
DOI: 10.1088/0957-4484/19/12/125703
Google Scholar
[9]
R. Krishnan, H. Q. Nguyen, C. V Thompson, W. K. Choi, and Y. L. Foo, Wafer-level ordered arrays of aligned carbon nanotubes with controlled size and spacing on silicon, Nanotechnology, vol. 16, no. 6, p.841–845, Jun. (2005).
DOI: 10.1088/0957-4484/16/6/038
Google Scholar
[10]
Q. Yang, C. Xiao, W. Chen, a. K. Singh, T. Asai, and a. Hirose, Growth mechanism and orientation control of well-aligned carbon nanotubes, Diamond and Related Materials, vol. 12, no. 9, p.1482–1487, Sep. (2003).
DOI: 10.1016/s0925-9635(03)00178-x
Google Scholar
[11]
M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, and V. Filip, Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters, Journal of Applied Physics, vol. 90, no. 3, p.1529, (2001).
DOI: 10.1063/1.1382848
Google Scholar
[12]
D. Q. Duy, H. S. Kim, D. M. Yoon, K. J. Lee, J. W. Ha, Y. G. Hwang, C. H. Lee, and B. T. Cong, Growth of carbon nanotubes on stainless steel substrates by DC-PECVD, Applied Surface Science, vol. 256, no. 4, p.1065–1068, Nov. (2009).
DOI: 10.1016/j.apsusc.2009.05.106
Google Scholar
[13]
T. Kato, G. -H. Jeong, T. Hirata, and R. Hatakeyama, Structure control of carbon nanotubes using radio-frequency plasma enhanced chemical vapor deposition, Thin Solid Films, vol. 457, no. 1, p.2–6, Jun. (2004).
DOI: 10.1016/j.tsf.2003.12.002
Google Scholar
[14]
V. B. Golovko, H. W. Li, B. Kleinsorge, S. Hofmann, J. Geng, M. Cantoro, Z. Yang, D. a Jefferson, B. F. G. Johnson, W. T. S. Huck, and J. Robertson, Submicron patterning of Co colloid catalyst for growth of vertically aligned carbon nanotubes, Nanotechnology, vol. 16, no. 9, p.1636–1640, Sep. (2005).
DOI: 10.1088/0957-4484/16/9/039
Google Scholar
[15]
C. J. Lee, J. Park, and J. A. Yu, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, vol. 360, no. July, p.250–255, (2002).
DOI: 10.1016/s0009-2614(02)00831-x
Google Scholar
[16]
Y. Abdi, J. Koohsorkhi, J. Derakhshandeh, S. Mohajerzadeh, H. Hoseinzadegan, M. D. Robertson, J. C. Bennett, X. Wu, and H. Radamson, PECVD-grown carbon nanotubes on silicon substrates with a nickel-seeded tip-growth structure, Materials Science and Engineering: C, vol. 26, no. 5–7, p.1219–1223, Jul. (2006).
DOI: 10.1016/j.msec.2005.09.012
Google Scholar
[17]
C. Ducati, I. Alexandrou, M. Chhowalla, G. a. J. Amaratunga, and J. Robertson, Temperature selective growth of carbon nanotubes by chemical vapor deposition, Journal of Applied Physics, vol. 92, no. 6, p.3299, (2002).
DOI: 10.1063/1.1499746
Google Scholar
[18]
M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, Carbon nanotube growth by PECVD: a review, Plasma Sources Science and Technology, vol. 12, no. 2, p.205–216, May (2003).
DOI: 10.1088/0963-0252/12/2/312
Google Scholar
[19]
G. Messina, V. Modafferi, S. Santangelo, P. Tripodi, M. G. Donato, M. Lanza, S. Galvagno, C. Milone, E. Piperopoulos, and a. Pistone, Large-scale production of high-quality multi-walled carbon nanotubes: Role of precursor gas and of Fe-catalyst support, Diamond and Related Materials, vol. 17, no. 7–10, p.1482–1488, Jul. (2008).
DOI: 10.1016/j.diamond.2008.01.060
Google Scholar
[20]
J. Benedikt, K. G. Y. Letourneur, M. Wisse, D. C. Schram, and M. C. M. van de Sanden, Plasma chemistry during deposition of a-C: H, Diamond and Related Materials, vol. 11, no. 3–6, p.989–993, Mar. (2002).
DOI: 10.1016/s0925-9635(01)00534-9
Google Scholar