Plasma Enhanced Chemical Vapor Deposition Time Effect on Multi-Wall Carbon Nanotube Growth Using C2H2 and H2 as Precursors

Article Preview

Abstract:

Multi-wall carbon nanotube (MWCNT) structures were grown on cobalt catalyst layer through Plasma Enhanced Chemical Vapor Deposition (PECVD) process. Acetylene (C2H2) and hydrogen (H2) are used as precursors during the PECVD process. The morphology structures of the MWCNTs grown under different PECVD time were investigated and characterized using Scanning Electron Microscope (SEM). The effect of the PECVD time on the MWCNT growth is studied by varying the PECVD time at 45 sec and 600 sec. The morphology structures suggest that the growth rate is proportional to the PECVD time under the similar setting condition of pressure, acetylene flow-rate and temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-62

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubulates of graphitics carbon, Nature, vol 354, no. 6348, pp.56-58, (1991).

Google Scholar

[2] F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chemical Physics Letters, vol. 370, no. 5–6, p.820–824, Mar. (2003).

DOI: 10.1016/s0009-2614(03)00187-8

Google Scholar

[3] Z. Ounaies, Electrical properties of single wall carbon nanotube reinforced polyimide composites, Composites Science and Technology, vol. 63, no. 11, p.1637–1646, Aug. (2003).

DOI: 10.1016/s0266-3538(03)00067-8

Google Scholar

[4] Z. J. Han, B. K. Tay, M. Shakerzadeh, and K. Ostrikov, Superhydrophobic amorphous carbon/carbon nanotube nanocomposites, Applied Physics Letters, vol. 94, no. 22, p.223106, (2009).

DOI: 10.1063/1.3148667

Google Scholar

[5] Y. H. Wang, J. Lin, C. H. a. Huan, and G. S. Chen, Synthesis of large area aligned carbon nanotube arrays from C[sub 2]H[sub 2]–H[sub 2] mixture by rf plasma-enhanced chemical vapor deposition, Applied Physics Letters, vol. 79, no. 5, p.680, (2001).

DOI: 10.1063/1.1390314

Google Scholar

[6] Y. Wang and J. T. W. Yeow, A Review of Carbon Nanotubes-Based Gas Sensors, Journal of Sensors, vol. 2009, p.1–24, (2009).

Google Scholar

[7] T. M. Minea, S. Point, a. Gohier, a. Granier, C. Godon, and F. Alvarez, Single chamber PVD/PECVD process for in situ control of the catalyst activity on carbon nanotubes growth, Surface and Coatings Technology, vol. 200, no. 1–4, p.1101–1105, Oct. (2005).

DOI: 10.1016/j.surfcoat.2005.01.053

Google Scholar

[8] C. Lan, P. Srisungsitthisunti, P. B. Amama, T. S. Fisher, X. Xu, and R. G. Reifenberger, Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation., Nanotechnology, vol. 19, no. 12, p.125703, Mar. (2008).

DOI: 10.1088/0957-4484/19/12/125703

Google Scholar

[9] R. Krishnan, H. Q. Nguyen, C. V Thompson, W. K. Choi, and Y. L. Foo, Wafer-level ordered arrays of aligned carbon nanotubes with controlled size and spacing on silicon, Nanotechnology, vol. 16, no. 6, p.841–845, Jun. (2005).

DOI: 10.1088/0957-4484/16/6/038

Google Scholar

[10] Q. Yang, C. Xiao, W. Chen, a. K. Singh, T. Asai, and a. Hirose, Growth mechanism and orientation control of well-aligned carbon nanotubes, Diamond and Related Materials, vol. 12, no. 9, p.1482–1487, Sep. (2003).

DOI: 10.1016/s0925-9635(03)00178-x

Google Scholar

[11] M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, and V. Filip, Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters, Journal of Applied Physics, vol. 90, no. 3, p.1529, (2001).

DOI: 10.1063/1.1382848

Google Scholar

[12] D. Q. Duy, H. S. Kim, D. M. Yoon, K. J. Lee, J. W. Ha, Y. G. Hwang, C. H. Lee, and B. T. Cong, Growth of carbon nanotubes on stainless steel substrates by DC-PECVD, Applied Surface Science, vol. 256, no. 4, p.1065–1068, Nov. (2009).

DOI: 10.1016/j.apsusc.2009.05.106

Google Scholar

[13] T. Kato, G. -H. Jeong, T. Hirata, and R. Hatakeyama, Structure control of carbon nanotubes using radio-frequency plasma enhanced chemical vapor deposition, Thin Solid Films, vol. 457, no. 1, p.2–6, Jun. (2004).

DOI: 10.1016/j.tsf.2003.12.002

Google Scholar

[14] V. B. Golovko, H. W. Li, B. Kleinsorge, S. Hofmann, J. Geng, M. Cantoro, Z. Yang, D. a Jefferson, B. F. G. Johnson, W. T. S. Huck, and J. Robertson, Submicron patterning of Co colloid catalyst for growth of vertically aligned carbon nanotubes, Nanotechnology, vol. 16, no. 9, p.1636–1640, Sep. (2005).

DOI: 10.1088/0957-4484/16/9/039

Google Scholar

[15] C. J. Lee, J. Park, and J. A. Yu, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, vol. 360, no. July, p.250–255, (2002).

DOI: 10.1016/s0009-2614(02)00831-x

Google Scholar

[16] Y. Abdi, J. Koohsorkhi, J. Derakhshandeh, S. Mohajerzadeh, H. Hoseinzadegan, M. D. Robertson, J. C. Bennett, X. Wu, and H. Radamson, PECVD-grown carbon nanotubes on silicon substrates with a nickel-seeded tip-growth structure, Materials Science and Engineering: C, vol. 26, no. 5–7, p.1219–1223, Jul. (2006).

DOI: 10.1016/j.msec.2005.09.012

Google Scholar

[17] C. Ducati, I. Alexandrou, M. Chhowalla, G. a. J. Amaratunga, and J. Robertson, Temperature selective growth of carbon nanotubes by chemical vapor deposition, Journal of Applied Physics, vol. 92, no. 6, p.3299, (2002).

DOI: 10.1063/1.1499746

Google Scholar

[18] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, Carbon nanotube growth by PECVD: a review, Plasma Sources Science and Technology, vol. 12, no. 2, p.205–216, May (2003).

DOI: 10.1088/0963-0252/12/2/312

Google Scholar

[19] G. Messina, V. Modafferi, S. Santangelo, P. Tripodi, M. G. Donato, M. Lanza, S. Galvagno, C. Milone, E. Piperopoulos, and a. Pistone, Large-scale production of high-quality multi-walled carbon nanotubes: Role of precursor gas and of Fe-catalyst support, Diamond and Related Materials, vol. 17, no. 7–10, p.1482–1488, Jul. (2008).

DOI: 10.1016/j.diamond.2008.01.060

Google Scholar

[20] J. Benedikt, K. G. Y. Letourneur, M. Wisse, D. C. Schram, and M. C. M. van de Sanden, Plasma chemistry during deposition of a-C: H, Diamond and Related Materials, vol. 11, no. 3–6, p.989–993, Mar. (2002).

DOI: 10.1016/s0925-9635(01)00534-9

Google Scholar