A Structure and Morphology of Nanocomposites Composed of Carbon Nanotubes with a Varying Fraction of Platinum Nanoparticles

Article Preview

Abstract:

A structure of nanocomposite materials consisting of carbon nanotubes with a varying fraction of platinum nanoparticles (5, 10 and 20 wt %) is compared in the paper. High-quality CNTs obtained in the CVD process, 100-200 mm long with a standard deviation of below 20% and with a diameter of 10-20 nm, with a standard deviation of below 30%, were used in the research. Raw CNTs did not contain metallic impurities or amorphous carbon deposits. An indirect method of bonding the earlier produced platinum nanoparticles to the surface of functionalised carbon nanotubes was employed to deposit platinum nanoparticles onto the surface of carbon nanotubes. A full array of changes in the loading of carbon nanotubes’ surface with platinum nanoparticles was achieved as a result of the experiments performed, starting with homogenous deposition to the clearly developed large agglomerations of platinum nanoparticles. The studies carried out using scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy and X-ray structural analysis have confirmed differences in the morphology, homogeneity and density of coating the carbon nanotubes’ surface with variedly concentrated platinum nanoparticles. Differences were also revealed in the structure of the newly formed nanocomposites. A nanocomposite with a 5% fraction of platinum nanoparticles demonstrates the best structure-related properties for the materials obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Jorio, M.S. Dresselhaus, G. Dresselhaus, Carbon Nanotubes: Advance Topics in the Synthesis, Structure, Properties and Applicantions, Springer Publisher, Berlin (2008).

DOI: 10.1007/978-3-540-72865-8

Google Scholar

[2] M. S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Topics in Applied Physics, vol. 80), European Journal of Control 15, no. 1 (2009).

DOI: 10.1007/3-540-39947-x

Google Scholar

[3] M. Meyyappan, Carbon Nanotubes: Science and Applications, CRC Press, Boca Raton (2005).

Google Scholar

[4] T. Akasaka, F. Wudl, S. Nagase, Chemistry of nanocarbons, Wiley, West Sussex (2010).

Google Scholar

[5] X. Peng, J. Chen, J.A. Misewich, S.S. Wong, Carbon nanotube - nanocrystal heterostructures, Chemical Society Reviews 38/4 (2009) 1076-1098.

DOI: 10.1039/b811424m

Google Scholar

[6] Y. Xing, Synthesis and electrochemical characterization of uniformly-dispresed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes, The Journal of Physical Chemistry B 108 (2004) 19255-19259.

DOI: 10.1021/jp046697i

Google Scholar

[7] L. Li, Y. Xing, Pt-Ru Nanoparticles Supported on Carbon Nanotubes as Methanol Fuel Cell Catalysts, Journal of Physical Chemistry C 111 (2007) 2803-2808.

DOI: 10.1021/jp0655470

Google Scholar

[8] G.G. Wildgoose, C.E. Banks, R.G. Compton, Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes, Methods and Applications 2/2 (2006) 182-193.

DOI: 10.1002/smll.200500324

Google Scholar

[9] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decoration carbon nanotubes with metal or semiconductor nanoparticles, Journal of Materials Chemistry 17 (2007) 2679-2694.

DOI: 10.1039/b700857k

Google Scholar

[10] M. Pawlyta, D. Łukowiec, A.D. Dobrzańska-Danikiewicz, Characterisation of carbon nanotubes decorated with platinum nanoparticles, Journal of Achievements in Materials and Manufacturing Engineering 53/2 (2012) 67-75.

DOI: 10.4028/www.scientific.net/msf.783-786.1503

Google Scholar

[11] Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics, Angewandte Chemie International Edition 48 (2009): 60-103.

DOI: 10.1002/anie.200802248

Google Scholar

[12] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science 287/5453 (2000): 622 - 625.

DOI: 10.1126/science.287.5453.622

Google Scholar

[13] W.D. Zhang, W. H. Zhang, Carbon Nanotubes as Active Components for Gas Sensors, Journal of Sensors, Vol. 2009, Article ID 160698, 16 pages, 2009. doi: 10. 1155/2009/160698.

DOI: 10.1155/2009/160698

Google Scholar

[14] N. Sinha, J. Ma, J.T.W. Yeow, Carbon Nanotube - Based Sensors, Journal of Nanoscience and Nanotechnology 6 (2006) 573–590.

DOI: 10.1166/jnn.2006.121

Google Scholar

[15] A. Star, V. Joshi, S. Skarupo, D. Thomas, J. CP Gabriel, Gas sensor array based on metal-decorated carbon nanotubes, The Journal of Physical Chemistry B 110/42 (2006) 21014-21020.

DOI: 10.1021/jp064371z

Google Scholar

[16] D.R. Kauffman, D.C. Sorescu, D.P. Schofield, B.L. Allen, K.D. Jordan, A. Star, Understanding the Sensor Response of Metal-Decorated Carbon Nanotubes, Nano Letters 10 (2010) 958–963.

DOI: 10.1021/nl903888c

Google Scholar

[17] R. Ströbel, J. Garche, P.T. Moseley, L. Jörissen, G. Wolf, Hydrogen storage by carbon materials, Journal of Power Sources 159/2 (2006) 781-801.

DOI: 10.1016/j.jpowsour.2006.03.047

Google Scholar

[18] T. Yildirim, S. Ciraci, Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium, Physical Review Letters 94/17 (2005) 175501.

DOI: 10.1103/physrevlett.94.175501

Google Scholar

[19] P. Brown, K. Takechi, P.V. Kamat, Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C 112/12 (2008) 4776-4782.

DOI: 10.1021/jp7107472

Google Scholar

[20] M. Bottini et al., Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes, Biomacromolecules 7/8 (2006) 2259-2263.

DOI: 10.1021/bm0602031

Google Scholar

[21] K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, Progress in the synthesis of carbon nanotube - and nanofiber - supported Pt electrocatalysts for PEM fuel cell catalysis, Journal of Applied Electrochemistry 36 (2006) 507–522.

DOI: 10.1007/s10800-006-9120-4

Google Scholar

[22] K. Jiang, A. Eitan, L.S. Schadler, P.M. Ajayan, R.W. Siegel, Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes, Nano Letters 3/3 (2003) 275-277.

DOI: 10.1021/nl025914t

Google Scholar

[23] Q.C. Shi, T.Z. Peng, A novel cholesterol oxidase biosensor based on Pt-nanoparticle/carbon nanotube modified electrode, Chinese Chemical Letters 16/8 (2005) 1081-1084.

Google Scholar

[24] H. F Cui, J.S. Ye, X. Liu, W.D. Zhang, F.S. Sheu, Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation, Nanotechnology 17 (2006) 2334-2339.

DOI: 10.1088/0957-4484/17/9/043

Google Scholar