[1]
W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci. 57 (2012) 487-656.
DOI: 10.1016/j.pmatsci.2011.07.001
Google Scholar
[2]
M.M. Trexler, N.N. Thadhani, Mechanical properties of bulk metallic glasses, Prog. Mater. Sci. 55 (2010) 759-839.
DOI: 10.1016/j.pmatsci.2010.04.002
Google Scholar
[3]
A.R. Yavari, J.J. Lewandowski, J. Eckert, Mechanical properties of bulk metallic glasses, Mrs Bull. 32 (2007) 635-638.
DOI: 10.1557/mrs2007.125
Google Scholar
[4]
G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: The smaller the better, Adv. Mater. 23 (2011) 461-476.
DOI: 10.1002/adma.201002148
Google Scholar
[5]
F. Jiang, H.F. Wang, M.Q. Jiang, G. Li, Y.L. Zhao, L. He, J. Sun, Ambient temperature embrittlement of a Zr-based bulk metallic glass, Mater. Sci. Eng. A 549 (2012) 14-19.
DOI: 10.1016/j.msea.2012.03.109
Google Scholar
[6]
B.Q. Chen, Y. Li, M. Yi, R. Li, S.J. Pang, H. Wang, T. Zhang, Optimization of mechanical properties of bulk metallic glasses by residual stress adjustment using laser surface melting, Scripta Mater. 66 (2012) 1057-1060.
DOI: 10.1016/j.scriptamat.2012.02.046
Google Scholar
[7]
J.P. Chu, J.E. Greene, J.S.C. Jang, J.C. Huang, Y.L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue, T.G. Nieh, Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating, Acta Mater. 60 (2012) 3226-3238.
DOI: 10.1016/j.actamat.2012.02.037
Google Scholar
[8]
Y. Zhang, W.H. Wang, A.L. Greer, Making metallic glasses plastic by control of residual stress, Nat. Mater. 5 (2006) 857-860.
DOI: 10.1038/nmat1758
Google Scholar
[9]
L.C. Zhang, F. Jiang, Y.L. Zhao, S.B. Pan, L. He, J. Sun, Shear band multiplication aided by free volume under three-point bending, J. Mater. Res. 25 (2010) 283-291.
DOI: 10.1557/jmr.2010.0028
Google Scholar
[10]
Y. Hu, J.F. Li, T. Lin, Y.H. Zhou, Plasticity improvement of Zr55Al10Ni5Cu30 bulk metallic glass by remelting master alloy ingots, J. Mater. Res. 24 (2009) 3590-3595.
DOI: 10.1557/jmr.2009.0430
Google Scholar
[11]
F. Jiang, M.Q. Jiang, H.F. Wang, Y.L. Zhao, L. He, J. Sun, Shear transformation zone volume determining ductile-brittle transition of bulk metallic glasses, Acta Mater. 59 (2011) 2057-(2068).
DOI: 10.1016/j.actamat.2010.12.006
Google Scholar
[12]
G. Chen, M. Ferry, Some aspects of the fracture behaviour of Mg65Cu25Y10 bulk metallic glass during room-temperature bending, J. Mater. Sci. 41 (2006) 4643-4648.
DOI: 10.1007/s10853-006-0059-y
Google Scholar
[13]
R.D. Conner, W.L. Johnson, N.E. Paton, W.D. Nix, Shear bands and cracking of metallic glass plates in bending, J. Appl. Phys. 94 (2003) 904-911.
DOI: 10.1063/1.1582555
Google Scholar
[14]
G. Kumar, D. Rector, R.D. Conner, J. Schroers, Embrittlement of Zr-based bulk metallic glasses, Acta Mater. 57 (2009) 3572-3583.
DOI: 10.1016/j.actamat.2009.04.016
Google Scholar
[15]
X. Wang, Q.P. Cao, Y.M. Chen, K. Hono, C. Zhong, Q.K. Jiang, X.P. Nie, L.Y. Chen, X.D. Wang, J.Z. Jiang, A plastic Zr-Cu-Ag-Al bulk metallic glass, Acta Mater. 59 (2011) 1037-1047.
DOI: 10.1016/j.actamat.2010.10.034
Google Scholar
[16]
A. Castellero, D.I. Uhlenhaut, B. Moser, J.F. Loffler, Critical Poisson ratio for room-temperature embrittlement of amorphous Mg85Cu5Y10, Phil. Mag. Lett. 87 (2007) 383-392.
DOI: 10.1080/09500830701194181
Google Scholar
[17]
A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Masumoto, Preparation of 16 mm diameter rod of amorphous Zr65Al7. 5Ni10Cu17. 5 alloy, Mater. Trans. JIM, 34 (1993) 1234-1237.
DOI: 10.2320/matertrans1989.34.1234
Google Scholar
[18]
H. Kato, J. Saida, A. Inoue, Influence of hydrostatic pressure during casting on as cast structure and mechanical properties in Zr65A7. 5Ni10Cu17. 5-xPdx (x=0, 17. 5) alloys, Scripta Mater. 51 (2004) 1063-1068.
DOI: 10.1016/j.scriptamat.2004.08.004
Google Scholar
[19]
Q.S. Zhang, W. Zhang, X.M. Wang, Y. Yokoyama, K. Yubuta, A. Inoue, Structure, Thermal stability and mechanical properties of Zr65Al7. 5Ni10Cu17. 5 glassy alloy rod with a diameter of 16 mm produced by tilt casting, Mater. Trans. 49 (2008).
DOI: 10.2320/matertrans.mer2008127
Google Scholar
[20]
C.F. Li, A. Inoue, Effect of Zn addition on the crystallization process in Zr65Al7. 5Ni10Cu17. 5 metallic glass, J. Alloys Compd. 325 (2001) 230-235.
DOI: 10.1016/s0925-8388(01)01377-9
Google Scholar
[21]
A. Inoue, Q.S. Zhang, W. Zhang, K. Yubuta, K.S. Son, X.M. Wang, Formation, thermal stability and mechanical properties of bulk glassy alloys with a diameter of 20 mm in Zr-(Ti, Nb)-Al-Ni-Cu system, Mater. Trans. 50 (2009) 388-394.
DOI: 10.2320/matertrans.mer2008179
Google Scholar
[22]
E. Shapiro, ASM Handbook, Vol. 8, Mechanical Testing and Evaluation, ASM International, Materials Park, OH, 2000, pp.172-184.
Google Scholar
[23]
W.F. Wu, C.Y. Zhang, Y.W. Zhang, K.Y. Zeng, Y. Li, Stress gradient enhanced plasticity in a monolithic bulk metallic glass, Intermetallics 16 (2008) 1190-1198.
DOI: 10.1016/j.intermet.2008.07.004
Google Scholar
[24]
L.Y. Chen, Q. Ge, S. Qu, Q.K. Jiang, X.P. Nie, J.Z. Jiang, Achieving large macroscopic compressive plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress distribution, Appl. Phys. Lett. 92 (2008).
DOI: 10.1063/1.2937141
Google Scholar
[25]
S.H. Chen, K.C. Chan, L. Xia, Effect of stress gradient on the deformation behavior of a bulk metallic glass under uniaxial tension, Mater. Sci. Eng. A 574 (2013) 262-265.
DOI: 10.1016/j.msea.2013.03.035
Google Scholar