Deformation Evolution of a Zr-Based Bulk Metallic Glass under Three-Point Bending Tests

Article Preview

Abstract:

Bending tests have been used extensively to assess the plastic deformation behavior of bulk metallic glasses (BMGs), however, a detailed experimental investigation of the deformation evolution of BMGs during such bending tests have been rarely reported. In the present work, the deformation evolution of a Zr-based BMG during three-point bending has been studied, and four distinct deformation evolution stages have been observed. After the elastic stage (stage I), the specimen starts to undergo some local plastic deformation while the bending curve still manifests an "elastic" state (stage II). In stage III, the specimen undergoes relatively stable plastic deformation. Finally, in stage IV, more plastic deformation occurs on the tensile side of the bending specimen resulting in the final fracture of the specimen. The current findings provide a fundamental understanding of the deformation mechanisms of BMGs under bending tests, which lays down a good foundation for further investigation of the deformation behavior of BMGs under more complex stress states.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-38

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci. 57 (2012) 487-656.

DOI: 10.1016/j.pmatsci.2011.07.001

Google Scholar

[2] M.M. Trexler, N.N. Thadhani, Mechanical properties of bulk metallic glasses, Prog. Mater. Sci. 55 (2010) 759-839.

DOI: 10.1016/j.pmatsci.2010.04.002

Google Scholar

[3] A.R. Yavari, J.J. Lewandowski, J. Eckert, Mechanical properties of bulk metallic glasses, Mrs Bull. 32 (2007) 635-638.

DOI: 10.1557/mrs2007.125

Google Scholar

[4] G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: The smaller the better, Adv. Mater. 23 (2011) 461-476.

DOI: 10.1002/adma.201002148

Google Scholar

[5] F. Jiang, H.F. Wang, M.Q. Jiang, G. Li, Y.L. Zhao, L. He, J. Sun, Ambient temperature embrittlement of a Zr-based bulk metallic glass, Mater. Sci. Eng. A 549 (2012) 14-19.

DOI: 10.1016/j.msea.2012.03.109

Google Scholar

[6] B.Q. Chen, Y. Li, M. Yi, R. Li, S.J. Pang, H. Wang, T. Zhang, Optimization of mechanical properties of bulk metallic glasses by residual stress adjustment using laser surface melting, Scripta Mater. 66 (2012) 1057-1060.

DOI: 10.1016/j.scriptamat.2012.02.046

Google Scholar

[7] J.P. Chu, J.E. Greene, J.S.C. Jang, J.C. Huang, Y.L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue, T.G. Nieh, Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating, Acta Mater. 60 (2012) 3226-3238.

DOI: 10.1016/j.actamat.2012.02.037

Google Scholar

[8] Y. Zhang, W.H. Wang, A.L. Greer, Making metallic glasses plastic by control of residual stress, Nat. Mater. 5 (2006) 857-860.

DOI: 10.1038/nmat1758

Google Scholar

[9] L.C. Zhang, F. Jiang, Y.L. Zhao, S.B. Pan, L. He, J. Sun, Shear band multiplication aided by free volume under three-point bending, J. Mater. Res. 25 (2010) 283-291.

DOI: 10.1557/jmr.2010.0028

Google Scholar

[10] Y. Hu, J.F. Li, T. Lin, Y.H. Zhou, Plasticity improvement of Zr55Al10Ni5Cu30 bulk metallic glass by remelting master alloy ingots, J. Mater. Res. 24 (2009) 3590-3595.

DOI: 10.1557/jmr.2009.0430

Google Scholar

[11] F. Jiang, M.Q. Jiang, H.F. Wang, Y.L. Zhao, L. He, J. Sun, Shear transformation zone volume determining ductile-brittle transition of bulk metallic glasses, Acta Mater. 59 (2011) 2057-(2068).

DOI: 10.1016/j.actamat.2010.12.006

Google Scholar

[12] G. Chen, M. Ferry, Some aspects of the fracture behaviour of Mg65Cu25Y10 bulk metallic glass during room-temperature bending, J. Mater. Sci. 41 (2006) 4643-4648.

DOI: 10.1007/s10853-006-0059-y

Google Scholar

[13] R.D. Conner, W.L. Johnson, N.E. Paton, W.D. Nix, Shear bands and cracking of metallic glass plates in bending, J. Appl. Phys. 94 (2003) 904-911.

DOI: 10.1063/1.1582555

Google Scholar

[14] G. Kumar, D. Rector, R.D. Conner, J. Schroers, Embrittlement of Zr-based bulk metallic glasses, Acta Mater. 57 (2009) 3572-3583.

DOI: 10.1016/j.actamat.2009.04.016

Google Scholar

[15] X. Wang, Q.P. Cao, Y.M. Chen, K. Hono, C. Zhong, Q.K. Jiang, X.P. Nie, L.Y. Chen, X.D. Wang, J.Z. Jiang, A plastic Zr-Cu-Ag-Al bulk metallic glass, Acta Mater. 59 (2011) 1037-1047.

DOI: 10.1016/j.actamat.2010.10.034

Google Scholar

[16] A. Castellero, D.I. Uhlenhaut, B. Moser, J.F. Loffler, Critical Poisson ratio for room-temperature embrittlement of amorphous Mg85Cu5Y10, Phil. Mag. Lett. 87 (2007) 383-392.

DOI: 10.1080/09500830701194181

Google Scholar

[17] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Masumoto, Preparation of 16 mm diameter rod of amorphous Zr65Al7. 5Ni10Cu17. 5 alloy, Mater. Trans. JIM, 34 (1993) 1234-1237.

DOI: 10.2320/matertrans1989.34.1234

Google Scholar

[18] H. Kato, J. Saida, A. Inoue, Influence of hydrostatic pressure during casting on as cast structure and mechanical properties in Zr65A7. 5Ni10Cu17. 5-xPdx (x=0, 17. 5) alloys, Scripta Mater. 51 (2004) 1063-1068.

DOI: 10.1016/j.scriptamat.2004.08.004

Google Scholar

[19] Q.S. Zhang, W. Zhang, X.M. Wang, Y. Yokoyama, K. Yubuta, A. Inoue, Structure, Thermal stability and mechanical properties of Zr65Al7. 5Ni10Cu17. 5 glassy alloy rod with a diameter of 16 mm produced by tilt casting, Mater. Trans. 49 (2008).

DOI: 10.2320/matertrans.mer2008127

Google Scholar

[20] C.F. Li, A. Inoue, Effect of Zn addition on the crystallization process in Zr65Al7. 5Ni10Cu17. 5 metallic glass, J. Alloys Compd. 325 (2001) 230-235.

DOI: 10.1016/s0925-8388(01)01377-9

Google Scholar

[21] A. Inoue, Q.S. Zhang, W. Zhang, K. Yubuta, K.S. Son, X.M. Wang, Formation, thermal stability and mechanical properties of bulk glassy alloys with a diameter of 20 mm in Zr-(Ti, Nb)-Al-Ni-Cu system, Mater. Trans. 50 (2009) 388-394.

DOI: 10.2320/matertrans.mer2008179

Google Scholar

[22] E. Shapiro, ASM Handbook, Vol. 8, Mechanical Testing and Evaluation, ASM International, Materials Park, OH, 2000, pp.172-184.

Google Scholar

[23] W.F. Wu, C.Y. Zhang, Y.W. Zhang, K.Y. Zeng, Y. Li, Stress gradient enhanced plasticity in a monolithic bulk metallic glass, Intermetallics 16 (2008) 1190-1198.

DOI: 10.1016/j.intermet.2008.07.004

Google Scholar

[24] L.Y. Chen, Q. Ge, S. Qu, Q.K. Jiang, X.P. Nie, J.Z. Jiang, Achieving large macroscopic compressive plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress distribution, Appl. Phys. Lett. 92 (2008).

DOI: 10.1063/1.2937141

Google Scholar

[25] S.H. Chen, K.C. Chan, L. Xia, Effect of stress gradient on the deformation behavior of a bulk metallic glass under uniaxial tension, Mater. Sci. Eng. A 574 (2013) 262-265.

DOI: 10.1016/j.msea.2013.03.035

Google Scholar