Verification of Numerical Roll Forming Loads with the Aid of Measurement Equipment

Article Preview

Abstract:

Roll forming is an important forming process for profile manufacturing in mass production. The design of the process has an important influence on the quality of the products. Therefore, the knowledge of the occurring loads during the roll forming process, e.g. forces and pressures, is essential for the process design. However, the experimental determination of the occurring contact normal pressures in roll forming processes poses a challenge. Finite element simulations offer the potential to approximate contact normal loads and thus, enable a better process design. Nevertheless, due to simplifications of the numerical model, a realistic and reliable output of loads in roll forming is not possible. An enhanced numerical model could provide more valuable information. This paper will demonstrate the reproduction of realistic contact normal pressures and load forces in a roll forming simulation. To verify the numerical values, they will be compared to data gained by experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

373-380

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. O. Goertan, D. Vucic, P. Groche, et al.: Roll forming of branched profiles, Journal of Materials Processing Technology, 209/17 (2009).

DOI: 10.1016/j.jmatprotec.2009.07.004

Google Scholar

[2] G.T. Halmos: Roll Forming Handbook, Tailor & Francis Group LLC, (2006).

Google Scholar

[3] U. Eichler: Walzprofilieren von Standardquerschnitten auf einer mehrgerüstigen Maschine mit einzeln angetriebenen Werkzeugwellen, Dissertation, Darmstadt (1987), in German.

Google Scholar

[4] M. Lindgren: Experimental Investigations of the Roll Load and Roll Torque High Strength Steel is Roll Formed, Journal of Materials Processing Technology, 191 (2007).

DOI: 10.1016/j.jmatprotec.2007.03.041

Google Scholar

[5] P. Groche, A. Zettler, S. Berner, et al.: Development and verification of a one-step-model for the design of flexible roll formed parts, International Journal of Material Forming, 4/4 (2011).

DOI: 10.1007/s12289-010-0998-3

Google Scholar

[6] A. Abrass, M. Özel, P. Groche: Accelerating the FE-Simulation of Roll Forming Processes with the Aid of specific Process's Properties, Numisheet (2011).

DOI: 10.1063/1.3623709

Google Scholar

[7] M. Lindgren: Validation of Finite Element Model of Roll Forming, International Deep Drawing Research Group IDDRG, International Conference, Sweden (2008).

Google Scholar

[8] J. Larranaga Amilibia: Geometrical accuracy improvement in flexible roll forming process by means of local heating, Tesis Doctoral Arrasate-Mondragón Unibertsitatea (2011).

Google Scholar

[9] Unternehmensberatungsdienst für Computeranwendungen GmbH, http: /www. ubeco. com, Iserlohn, Germany (2013).

Google Scholar

[10] J. Mackel: Die anwendungsoptimierte Elastizitätsberechnung von Walzgerüsten unterschiedlicher Bauart, Dissertation, Aachen (1996), in German.

Google Scholar

[11] P. Groche, C. Mueller, T. Traub, K. Butterweck: Experimental and Numerical Determination of Roll Forming Loads, Steel Research International, Vol. 85 Iss. 1 (2014).

DOI: 10.1002/srin.201300190

Google Scholar

[12] T. Block: Verdrehwiderstände bewehrter Elastomerlager. Dissertation, Ruhr-Universität Bochum, Bochum (2010), in German.

Google Scholar