Deformation Behavior and Wear Resistance of Hard TiCN and TiCN/Ti Coatings on Ti6Al4V Alloy

Article Preview

Abstract:

Monolayer titanium carbide nitride (TiCN) and multilayer TiCN reinforced titanium (Ti) are coated on the surface of Ti6Al4V alloy by Filtered Arc Deposition System (FADS). Surface chemical composition has been characterized by an X-ray diffraction (XRD). Wear resistance of TiCN coating and TiCN/Ti coating have been detected by hommel tester T1000. Hardness and deformation mechanisms of the multilayer coatings are investigated using depth-sensing indentation comparison with the monolayer TiCN coatings. Focused Ion Beam (FIB) and Transmission Electron Microscopy (TEM) are used to identify the fracture modes of the coatings. The TEM image observations show that the inclined crack is the dominant crack in the monolayer TiCN coating while small bending crack is the dominant crack in the multilayer TiCN/Ti coating. The Ti layer with good ductility could efficiently suppress the crack propagation and absorb more indent energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

451-458

Citation:

Online since:

May 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.W. Karr, I. Petrov, D.G. Cahill, J. E Greene, Morphology of epitaxial TiN(001) grown by magnetron sputtering, Appl. Phys. Lett. 70 (1997) 1703-1705.

DOI: 10.1063/1.118675

Google Scholar

[2] N. Poondla, T.S. Srivatsan, A. Patnaik, M. Petraroli, A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti-6Al-4V, J. Alloy. Compd. 486 (2009) 162-167.

DOI: 10.1016/j.jallcom.2009.06.172

Google Scholar

[3] F. K. Mante, G.R. Baran, B. lucas, Nanoindentation studies of titanium single crystals, Biomaterials, 20 (1999) 1051-1055.

DOI: 10.1016/s0142-9612(98)00257-9

Google Scholar

[4] Y.T. Pei, V. Ocelik, J. Th.M. De Hosson, SiCp/Ti6Al4V functionally graded materials produced by laser melt injection, Acta Mater. 50 (2002) 2035-(2051).

DOI: 10.1016/s1359-6454(02)00049-6

Google Scholar

[5] P. Habibovic, J. Li, C.M. van der Valk, G. Meijer, P. Layrolle, C.A. van Blitterswijk, K. de Groot, Biological performance of uncoated and octacalcium phosphate coated Ti6Al4V, Biomaterials. 26 (2005) 23-26.

DOI: 10.1016/j.biomaterials.2004.02.026

Google Scholar

[6] L. Qin, C. Liu, K. Yang, B. Tang, Characteristics and wear performance of borided Ti6Al4V alloy prepared by double glow plasma surface alloying, Surf. Coat. Technol. 225 (2013) 92-96.

DOI: 10.1016/j.surfcoat.2013.02.053

Google Scholar

[7] D. Starosvetsky, I. Gotman, TiN coating improves the corrosion behaviour of superelastic NiTi surgical alloy, Surf. Coat. Technol. 148 (2001) 268-276.

DOI: 10.1016/s0257-8972(01)01356-1

Google Scholar

[8] J.C. Caicedo, G. Cabrera, W. Aperador, C. Escobar, C. Amaya, Corrosion-Erosion Effect on TiN/TiAlN Multilayers, J. Mater. Eng. Perform. 21 (2012) 1949-(1955).

DOI: 10.1007/s11665-011-0093-z

Google Scholar

[9] C.Z. Zhang, Y.S. Li, Y. Tang, L. Yang, L. Zhang, Y. Sun, Q. Yang, A. Hirose, Nanocrystalline diamond thin films grown on Ti6Al4V alloy, Thin Solid Films. 527 (2013) 59-64.

DOI: 10.1016/j.tsf.2012.12.014

Google Scholar

[10] A.P. Serro, C. Completo, R. Colaco, F. dos Santos, C. Lobato da Silva, J.M.S. Cabral, H. Araujo, E. Pires, B. Saramago. A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications, Surf. Coat. Technol. 203 (2009).

DOI: 10.1016/j.surfcoat.2009.06.010

Google Scholar

[11] E. Camps, L. Escobar-Alarcon, I. Camps, S. Muhl, M. Flores, Tribological characterization of TiCN coatings deposited by two crossed laser ablation plasma beams, Appl. Phys. A Mater. Sci. Process. 110 (2013) 957-961.

DOI: 10.1007/s00339-012-7227-5

Google Scholar

[12] S.J. Bull, D.G. Bhat, M.H. Staia, Properties and performance of commercial TiCN coatings. Part 1: coating architecture and hardness modeling, Surf. Coat. Technol. 163 (2003) 499-506.

DOI: 10.1016/s0257-8972(02)00650-3

Google Scholar

[13] S. Bhowmick, R. Bhide, M. Hoffman, V. Jayaram and S.K. Biswas, Fracture mode transitions during indentation of columnar TiN coatings on metal, Philos. Mag. 85 (2005) 2927-2945.

DOI: 10.1080/14786430500155213

Google Scholar

[14] N.J.M. Carvalho, J. Th.M. De Hosson. Deformation mechanisms in TiN/(Ti, Al)N multilayers under depth-sensing indentation, Acta Mater. 54 (2006) 1857-1862.

DOI: 10.1016/j.actamat.2005.12.010

Google Scholar

[15] Z.H. Xie, M. Hoffman, P. Munroe, A. Bendavid, P.J. Martin. Deformation mechanisms of TiN multilayer coatings alternated by ductile or stiff interlayers, Acta Mater. 56 (2008) 852-861.

DOI: 10.1016/j.actamat.2007.10.047

Google Scholar

[16] P.T. Hammond, Form and Function in Multilayer Assembly: New Applications at the Nanoscale, Adv. Mater. 16 (2004) 1271-1293.

DOI: 10.1002/adma.200400760

Google Scholar

[17] R.G. Hoagland, R.J. Kurtz, C.H. Henager Jr, Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 150 (2004) 775-779.

DOI: 10.1016/j.scriptamat.2003.11.059

Google Scholar

[18] M.J. Demkowicz, R.G. Hoagland, J.P. Hirth, Interface Structure and Radiation Damage Resistance in Cu-Nb Multilayer Nanocomposites, Phys. Rev. Lett. 100 (2008) 136102.

DOI: 10.1103/physrevlett.100.136102

Google Scholar

[19] S.W. Huang, M.W. Ng, M. Samandi, Tirbological behaviour and microstructure of TiCxN(1-x) coatings deposited by filtered arc, Wear, 252 (2002) 566-579.

DOI: 10.1016/s0043-1648(02)00010-8

Google Scholar

[20] Y. Sun, C. Lu, A.K. Tieu, Y. Zhao, H.T. Zhu, K.Y. Cheng, C. Kong, Fracture behaviours of TiN and TiN/Ti multilayer coatings on Ti substrate during nanoindentation. TMS Annual Meeting 1 (2012) 963-970.

DOI: 10.1002/9781118356074.ch121

Google Scholar

[21] Chai H., Transverse fracture in thin-film coatings under spherical indentation, Acta Mater. 53 (2005) 487-498.

DOI: 10.1016/j.actamat.2004.10.006

Google Scholar

[22] J.H. Ahn, O. Kwon, Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect. J. Mater. Res. 16 (2001) 3170-3178.

DOI: 10.1557/jmr.2001.0437

Google Scholar

[23] Q. Zhu, H.T. Zhu, A.K. Tieu, Three dimensional microstructure study of oxide scale formed on high-speed steel by means of SEM, FIB and TEM, Corros. Sci. 53 (2011) 3603-3611.

DOI: 10.1016/j.corsci.2011.07.004

Google Scholar

[24] S.Y. Yoon, S. Y. Yoon, W.S. Chung, K.H. Kim, Impact-wear behaviors of TiN and Ti-Al-N coatings on AISI D2 steel and WC-Co substrates, Surf. Coat. Technol. 177 (2004) 645-650.

DOI: 10.1016/j.surfcoat.2003.08.067

Google Scholar

[25] A. Bendavid, P.J. Martin, J. Cairney, M. Hoffman, A.C. Fischer-Cripps, Deposition of nanocomposite TiN-Si3N4 thin films by hybrid cathodic arc and chemical vapor process, Appl. Phys. A Mater. Sci. Process. 81 (2005) 151-158.

DOI: 10.1007/s00339-004-2951-0

Google Scholar

[26] F.K. Lotgering, Topotactical reactions with ferromagnetic oxides having hexagonal crystal structure, J. Inorg. Nucl. Chem. 9 (1959) 113-123.

DOI: 10.1016/0022-1902(59)80070-1

Google Scholar