[1]
B.W. Karr, I. Petrov, D.G. Cahill, J. E Greene, Morphology of epitaxial TiN(001) grown by magnetron sputtering, Appl. Phys. Lett. 70 (1997) 1703-1705.
DOI: 10.1063/1.118675
Google Scholar
[2]
N. Poondla, T.S. Srivatsan, A. Patnaik, M. Petraroli, A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti-6Al-4V, J. Alloy. Compd. 486 (2009) 162-167.
DOI: 10.1016/j.jallcom.2009.06.172
Google Scholar
[3]
F. K. Mante, G.R. Baran, B. lucas, Nanoindentation studies of titanium single crystals, Biomaterials, 20 (1999) 1051-1055.
DOI: 10.1016/s0142-9612(98)00257-9
Google Scholar
[4]
Y.T. Pei, V. Ocelik, J. Th.M. De Hosson, SiCp/Ti6Al4V functionally graded materials produced by laser melt injection, Acta Mater. 50 (2002) 2035-(2051).
DOI: 10.1016/s1359-6454(02)00049-6
Google Scholar
[5]
P. Habibovic, J. Li, C.M. van der Valk, G. Meijer, P. Layrolle, C.A. van Blitterswijk, K. de Groot, Biological performance of uncoated and octacalcium phosphate coated Ti6Al4V, Biomaterials. 26 (2005) 23-26.
DOI: 10.1016/j.biomaterials.2004.02.026
Google Scholar
[6]
L. Qin, C. Liu, K. Yang, B. Tang, Characteristics and wear performance of borided Ti6Al4V alloy prepared by double glow plasma surface alloying, Surf. Coat. Technol. 225 (2013) 92-96.
DOI: 10.1016/j.surfcoat.2013.02.053
Google Scholar
[7]
D. Starosvetsky, I. Gotman, TiN coating improves the corrosion behaviour of superelastic NiTi surgical alloy, Surf. Coat. Technol. 148 (2001) 268-276.
DOI: 10.1016/s0257-8972(01)01356-1
Google Scholar
[8]
J.C. Caicedo, G. Cabrera, W. Aperador, C. Escobar, C. Amaya, Corrosion-Erosion Effect on TiN/TiAlN Multilayers, J. Mater. Eng. Perform. 21 (2012) 1949-(1955).
DOI: 10.1007/s11665-011-0093-z
Google Scholar
[9]
C.Z. Zhang, Y.S. Li, Y. Tang, L. Yang, L. Zhang, Y. Sun, Q. Yang, A. Hirose, Nanocrystalline diamond thin films grown on Ti6Al4V alloy, Thin Solid Films. 527 (2013) 59-64.
DOI: 10.1016/j.tsf.2012.12.014
Google Scholar
[10]
A.P. Serro, C. Completo, R. Colaco, F. dos Santos, C. Lobato da Silva, J.M.S. Cabral, H. Araujo, E. Pires, B. Saramago. A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications, Surf. Coat. Technol. 203 (2009).
DOI: 10.1016/j.surfcoat.2009.06.010
Google Scholar
[11]
E. Camps, L. Escobar-Alarcon, I. Camps, S. Muhl, M. Flores, Tribological characterization of TiCN coatings deposited by two crossed laser ablation plasma beams, Appl. Phys. A Mater. Sci. Process. 110 (2013) 957-961.
DOI: 10.1007/s00339-012-7227-5
Google Scholar
[12]
S.J. Bull, D.G. Bhat, M.H. Staia, Properties and performance of commercial TiCN coatings. Part 1: coating architecture and hardness modeling, Surf. Coat. Technol. 163 (2003) 499-506.
DOI: 10.1016/s0257-8972(02)00650-3
Google Scholar
[13]
S. Bhowmick, R. Bhide, M. Hoffman, V. Jayaram and S.K. Biswas, Fracture mode transitions during indentation of columnar TiN coatings on metal, Philos. Mag. 85 (2005) 2927-2945.
DOI: 10.1080/14786430500155213
Google Scholar
[14]
N.J.M. Carvalho, J. Th.M. De Hosson. Deformation mechanisms in TiN/(Ti, Al)N multilayers under depth-sensing indentation, Acta Mater. 54 (2006) 1857-1862.
DOI: 10.1016/j.actamat.2005.12.010
Google Scholar
[15]
Z.H. Xie, M. Hoffman, P. Munroe, A. Bendavid, P.J. Martin. Deformation mechanisms of TiN multilayer coatings alternated by ductile or stiff interlayers, Acta Mater. 56 (2008) 852-861.
DOI: 10.1016/j.actamat.2007.10.047
Google Scholar
[16]
P.T. Hammond, Form and Function in Multilayer Assembly: New Applications at the Nanoscale, Adv. Mater. 16 (2004) 1271-1293.
DOI: 10.1002/adma.200400760
Google Scholar
[17]
R.G. Hoagland, R.J. Kurtz, C.H. Henager Jr, Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 150 (2004) 775-779.
DOI: 10.1016/j.scriptamat.2003.11.059
Google Scholar
[18]
M.J. Demkowicz, R.G. Hoagland, J.P. Hirth, Interface Structure and Radiation Damage Resistance in Cu-Nb Multilayer Nanocomposites, Phys. Rev. Lett. 100 (2008) 136102.
DOI: 10.1103/physrevlett.100.136102
Google Scholar
[19]
S.W. Huang, M.W. Ng, M. Samandi, Tirbological behaviour and microstructure of TiCxN(1-x) coatings deposited by filtered arc, Wear, 252 (2002) 566-579.
DOI: 10.1016/s0043-1648(02)00010-8
Google Scholar
[20]
Y. Sun, C. Lu, A.K. Tieu, Y. Zhao, H.T. Zhu, K.Y. Cheng, C. Kong, Fracture behaviours of TiN and TiN/Ti multilayer coatings on Ti substrate during nanoindentation. TMS Annual Meeting 1 (2012) 963-970.
DOI: 10.1002/9781118356074.ch121
Google Scholar
[21]
Chai H., Transverse fracture in thin-film coatings under spherical indentation, Acta Mater. 53 (2005) 487-498.
DOI: 10.1016/j.actamat.2004.10.006
Google Scholar
[22]
J.H. Ahn, O. Kwon, Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect. J. Mater. Res. 16 (2001) 3170-3178.
DOI: 10.1557/jmr.2001.0437
Google Scholar
[23]
Q. Zhu, H.T. Zhu, A.K. Tieu, Three dimensional microstructure study of oxide scale formed on high-speed steel by means of SEM, FIB and TEM, Corros. Sci. 53 (2011) 3603-3611.
DOI: 10.1016/j.corsci.2011.07.004
Google Scholar
[24]
S.Y. Yoon, S. Y. Yoon, W.S. Chung, K.H. Kim, Impact-wear behaviors of TiN and Ti-Al-N coatings on AISI D2 steel and WC-Co substrates, Surf. Coat. Technol. 177 (2004) 645-650.
DOI: 10.1016/j.surfcoat.2003.08.067
Google Scholar
[25]
A. Bendavid, P.J. Martin, J. Cairney, M. Hoffman, A.C. Fischer-Cripps, Deposition of nanocomposite TiN-Si3N4 thin films by hybrid cathodic arc and chemical vapor process, Appl. Phys. A Mater. Sci. Process. 81 (2005) 151-158.
DOI: 10.1007/s00339-004-2951-0
Google Scholar
[26]
F.K. Lotgering, Topotactical reactions with ferromagnetic oxides having hexagonal crystal structure, J. Inorg. Nucl. Chem. 9 (1959) 113-123.
DOI: 10.1016/0022-1902(59)80070-1
Google Scholar