Assessment of Using Secondary Concentrators for Nonferrous Material Removal Applications

Article Preview

Abstract:

The paper investigates using a secondary solar concentrator to augment the solar energy density focused by a primary concentrator (a paraboloid dish). The secondary concentrator protects the focal point from cooling by convection from wind, and also would harness all the solar rays reflected by the primary concentrator, resulting in reduced losses due to aberration and other errors in finding the focal point. The intended application is the utilization of solar energy for nonferrous material ablation that could potentially replace or assist industrial lasers

You might also be interested in these eBooks

Info:

Periodical:

Pages:

506-513

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Giostri, M. Binotti, P. Silva, E. Macchi, G. Manzolini, Comparison Of Two Linear Collectors In Solar Thermal Plants: Parabolic Trough Vs Fresnel, Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, ES2011, August 7-10, 2011, Washington, DC, USA.

DOI: 10.1115/es2011-54312

Google Scholar

[2] D. Feuermann, J. M. Gordon, M. Huleihil, Solar Fiber-Optic Mini-Dish Concentrators: First Experimental Results And Field Experience, Sol. Eng. Vol. 72, No. 6, p.459–472, (2002).

DOI: 10.1016/s0038-092x(02)00025-7

Google Scholar

[3] M. Kaltschmitt, W. Streicher, A. Wiese, Renewable Energy: Technology, Economics and Environment, fourth ed., Springer, New York, (2001).

Google Scholar

[4] M. Landoa, J. Kagana, B. Linyekina, V. Dobrusin, A solar-pumped Nd: YAG laser in the high collection efficiency regime, Opt. Comm. 222 (2003) 371–381.

DOI: 10.1016/s0030-4018(03)01601-8

Google Scholar

[5] R. Pereira, D. Liang, High conversion efficiency solar laser pumping by a light-guide/2D-CPC cavity, Opt. Comm. 282 (2009) 1385–1392.

DOI: 10.1016/j.optcom.2008.12.052

Google Scholar

[6] M. Lando, Y. Shimony, R. M.J. Benmair , D. Abramovich, V. Krupkin, A. Yogev, Visible Solar-Pumped Lasers, Opt. Mat. 13 (1999) 111-115.

DOI: 10.1016/s0925-3467(99)00019-1

Google Scholar

[7] J. Ruelas, N. Velázquez, J. Cerezo, A Mathematical Model To Develop A Scheffler-Type Solar Concentrator Coupled With A Stirling Engine, Appl Energy, (2012).

DOI: 10.1016/j.apenergy.2012.05.040

Google Scholar

[8] C. Chena, C. Lina, H. Janb, A Solar Concentrator With Two Reflection Mirrors Designed By Using A Ray Tracing Method, Optik 121 (2010) 1042–1051.

DOI: 10.1016/j.ijleo.2008.12.010

Google Scholar

[9] V. Badescu, Computing global and diffuse solar hourly irradiation on clear sky, Review and testing of 54 models, Volume 16, Issue 3, April 2012, Pages 1636–1656.

DOI: 10.1016/j.rser.2011.12.010

Google Scholar

[10] I. Ali and K. Reddy, Optical Performance Of Circular And Elliptical 3-D Static Solar Concentrators, National Solar Conference, American Solar Energy Society 2010, Arizona, USA.

Google Scholar

[11] http: /uae2. gsfc. nasa. gov/uae_solar_elevation_angles. pdf.

Google Scholar