[1]
F. P. Melchels, M. A. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher, Additive manufacturing of tissues and organs. Progress in Polymer Science; 2012; 37(8), 1079-1104.
DOI: 10.1016/j.progpolymsci.2011.11.007
Google Scholar
[2]
M. Salmi, J. Tuomi, Kaija-Stiina Paloheimo, R. Björkstrand, M. Paloheimo, J. Salo, R. Kontio, K. Mesimäki and A. Mäkitie. Patient-specific reconstruction with 3D modeling and DMLS additive manufacturing. Rapid Prototyping Journal. Bradford: Emerald Group Publishing, Limited; 2012; 18: 209-214.
DOI: 10.1108/13552541211218126
Google Scholar
[3]
M. Salmi, K. Paloheimo, J. Tuomi, J. Wolff, and A. Mäkitie (2013), Accuracy of medical models made by additive manufacturing (rapid manufacturing). Journal of Cranio-Maxillofacial Surgery, pp.1-7.
DOI: 10.1016/j.jcms.2012.11.041
Google Scholar
[4]
T. Xu, J. J. Yoo, A. Atala, and D. Dice, Inkjet printing of tissues and cells, Patent No.: US 2009/0208577. (2009).
Google Scholar
[5]
G. Villar, A. D. Graham, and H. Bayley, A Tissue-Like Printed. Material Science, 2013, 340(6128), 48-52.
DOI: 10.1126/science.1229495
Google Scholar
[6]
F. Marga, K. Jakab, C. Khatiwala, B. Shepherd, S. Dorfman, B. Hubbard, and F. Gabor, (2012). Toward engineering functional organ modules by additive manufacturing. Biofabrication, 4(2), 022001.
DOI: 10.1088/1758-5082/4/2/022001
Google Scholar
[7]
M. Nakamura, S. Iwanaga, C. Henmi, K. Arai, and Y. Nishiyama (2010). Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication, 2(1), 014110.
DOI: 10.1088/1758-5082/2/1/014110
Google Scholar
[8]
S. Tasoglu, and U. Demirci (2012). Bioprinting for stem cell research. Trends in biotechnology.
Google Scholar
[9]
K. Murphy, S. Dorfman, N. Smith, L. Bauwens, I. Sohn, and T. McDonald. U.S. Patent No. 0116568 A1. Washington, DC: U.S. Patent and Trademark Office. (2012).
Google Scholar
[10]
A. Faulkner-Jones, S. Greenhough, J. A. King, J. Gardner, A. Courtney, and W. Shu (2013). Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication, 5(1), 015013.
DOI: 10.1088/1758-5082/5/1/015013
Google Scholar
[11]
R. Chang, K. Emami, H. Wu, and W. Sun (2010). Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2(4), 045004.
DOI: 10.1088/1758-5082/2/4/045004
Google Scholar
[12]
J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das (2005).
Google Scholar
[13]
K. V. Wong, and A. Hernandez (2012), A review of Additive Manufacturing, ISRN Mechanical Engineering, Vol 2012, Article ID 208760.
Google Scholar
[14]
Information on marketsandmarkets. com, (2012).
Google Scholar
[15]
P. Liacouras, J. Garnes, N. Roman, A. Petrich, and G.T. Grant. Designing and manufacturing an auricular prosthesis using computed tomography, 3-dimensional photographic imaging, and additive manufacturing: a clinical report. The Journal of prosthetic dentistry. 2011; 105: 78-82.
DOI: 10.1016/s0022-3913(11)60002-4
Google Scholar
[16]
D.R. Foster, M.J. Dapino, and S.S. Babu. Elastic constants of Ultrasonic Additive Manufactured Al 3003-H18. Ultrasonics. 2013; 53: 211.
DOI: 10.1016/j.ultras.2012.06.002
Google Scholar
[17]
H. Werner, J. R. L. Dos Santos, R. Fontes, P. Daltro, E. Gasparetto, E. Marchiori, and S. Campbell. Additive manufacturing models of fetuses built from three‐dimensional ultrasound, magnetic resonance imaging and computed tomography scan data. Ultrasound in Obstetrics and Gynecology. 2010; 36: 355-361.
DOI: 10.1002/uog.7619
Google Scholar
[18]
R.W. Lindsay, M. Herberg, P. Liacouras. The use of three-dimensional digital technology and additive manufacturing to create templates for soft-tissue reconstruction. Plastic and reconstructive surgery. 2012; 130: 629e.
DOI: 10.1097/prs.0b013e318262f509
Google Scholar
[19]
S. Telfer, J. Pallari, J. Munguia, K. Dalgarno, M. McGeough, and J. Woodburn. Embracing additive manufacture: implications for foot and ankle orthosis design. BMC musculoskeletal disorders. 2012; 13: 84-84.
DOI: 10.1186/1471-2474-13-84
Google Scholar
[20]
S. Rahmati, F. Abbaszadeh, and F. Farahmand. An improved methodology for design of custom-made hip prostheses to be fabricated using additive manufacturing technologies. Rapid Prototyping Journal. 2012; 18: 389-400.
DOI: 10.1108/13552541211250382
Google Scholar
[21]
D. Cook, V. Gervasi, R. Rizza, S. Kamara, X. Liu. Additive fabrication of custom pedorthoses for clubfoot correction. Rapid Prototyping Journal. 2010; 16: 189-193.
DOI: 10.1108/13552541011034852
Google Scholar
[22]
M. Kudou, D. Ejima, H. Sato, R. Yumioka, T. Arakawa, and K. Tsumoto. Refolding single-chain antibody (scFv) using lauroyl-L-glutamate as a solubilization detergent and arginine as a refolding additive. Protein expression and purification. 2011; 77: 68-74.
DOI: 10.1016/j.pep.2010.12.007
Google Scholar
[23]
M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri. Manufacturing and processing of NiTi implants: A review. Progress in Materials Science. 2012; 57: 911-946.
DOI: 10.1016/j.pmatsci.2011.11.001
Google Scholar
[24]
E. Atzeni, L. Iuliano, P. Minetola, and A. Salmi. Proposal of an innovative benchmark for accuracy evaluation of dental crown manufacturing. Computers in biology and medicine. 2012; 42: 548.
DOI: 10.1016/j.compbiomed.2012.01.009
Google Scholar
[25]
G.K. Sándor, S. Miettinen, V.J. Tuovinen, J. Wolff, M. Patrikoski, J. Jokinen, E. Nieminen, B. Mannerström, O. Lappalainen, R. Seppänen, and S. Miettinen. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. 2013; 71: 938.
DOI: 10.1016/j.joms.2012.11.014
Google Scholar
[26]
A. Rainer, S.M. Giannitelli, D. Accoto, S. De Porcellinis, E. Guglielmelli, and M. Trombetta. Load-Adaptive Scaffold Architecturing: A Bioinspired Approach to the Design of Porous Additively Manufactured Scaffolds with Optimized Mechanical Properties. Annals of Biomedical Engineering. 2012; 40: 966-975.
DOI: 10.1007/s10439-011-0465-4
Google Scholar
[27]
J.H.P. Pallari, K.W. Dalgarno, and J. Woodburn. Mass customization of foot orthoses for rheumatoid arthritis using selective laser sintering. IEEE transactions on bio-medical engineering. 2010; 57: 1750.
DOI: 10.1109/tbme.2010.2044178
Google Scholar
[28]
H.D.A. Almeida, and P. J. da Silva Bártolo. Virtual topological optimisation of scaffolds for rapid prototyping. Medical Engineering and Physics. 2010; 32: 775-782.
DOI: 10.1016/j.medengphy.2010.05.001
Google Scholar
[29]
S. Ayyildiz, C. Sahin, O.M. Akgün, F. Basak. Combined treatment with laser sintering and zirconium: a case report of dentinogenesis imperfecta. Case reports in dentistry. 2013; 2013: 745959.
DOI: 10.1155/2013/745959
Google Scholar
[30]
K. Manukyan, N. Amirkhanyan, S. Aydinyan, V. Danghyan, R. Grigoryan, N. Sarkisyan, G. Gasparyan, R. Aroutiounian, and S. Kharatyan. Novel NiZr-based porous biomaterials: Synthesis and in vitro testing. Chemical Engineering Journal. 2010; 162: 406-414.
DOI: 10.1016/j.cej.2010.05.042
Google Scholar
[31]
J.G.G. Dobbe, J.C. Vroemen, S.D. Strackee, and G.J. Streekstra. Patient-tailored plate for bone fixation and accurate 3D positioning in corrective osteotomy. Medical & biological engineering & computing. 2013; 51: 19.
DOI: 10.1007/s11517-012-0959-8
Google Scholar
[32]
C. Flege, M. Jobmann, K. Wissenbach, et al. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting. Journal of Materials Science : Materials in Medicine. 2013; 24: 241.
DOI: 10.1007/s10856-012-4779-z
Google Scholar
[33]
D. Yoo. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds. Medical engineering & physics. 2012; 34: 762.
DOI: 10.1016/j.medengphy.2012.05.008
Google Scholar
[34]
M.J.J. Liu, S.M. Chou, C.K. Chua, B.C.M. Tay, and B.K. Ng. The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography. Medical engineering & physics. 2013; 35: 253.
DOI: 10.1016/j.medengphy.2011.09.029
Google Scholar
[35]
I.T. Ozbolat, and Y. Yu. Bioprinting toward organ fabrication: challenges and future trends. IEEE transactions on bio-medical engineering. 2013; 60: 691-699.
DOI: 10.1109/tbme.2013.2243912
Google Scholar
[36]
M. Gill, M.J. Garber, Y. Hua, and D. Jenke. Development and Validation of an HPLC-MS-MS Method For Quantitating Bis(2, 2, 6, 6-tetramethyl-4- piperidyl) Sebacate (Tinuvin 770) and a Related Substance in Aqueous Extracts of Plastic Materials. Journal of Chromatographic Science. 2010; 48: 200-207.
DOI: 10.1093/chromsci/48.3.200
Google Scholar
[37]
N.J. Castro, S.A. Hacking, and L.G. Zhang. Recent Progress in Interfacial Tissue Engineering Approaches for Osteochondral Defects. Annals of Biomedical Engineering. 2012; 40: 1628-1640.
DOI: 10.1007/s10439-012-0605-5
Google Scholar
[38]
A. Monfared, G. Mitteramskogler, S. Gruber, J. Salisbury, J. Kenneth, J. Stampfl, and N.H. Blevins. High-fidelity, inexpensive surgical middle ear simulator. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2012; 33: 1573.
DOI: 10.1097/mao.0b013e31826dbca5
Google Scholar
[39]
B. Derby. Printing and prototyping of tissues and scaffolds. Science (New York, N.Y. ). 2012; 338: 921-926.
DOI: 10.1126/science.1226340
Google Scholar
[40]
O. Diegel, S. Singamneni, S. Reay, and A. Withell. Tools for Sustainable Product Design: Additive Manufacturing. Journal of Sustainable Development. 2010; 3: 68.
DOI: 10.5539/jsd.v3n3p68
Google Scholar
[41]
M.J. Peltola, P.K. Vallittu, V. Vuorinen, A.A.J. Aho, A. Puntala, and K.M.J. Aitasalo. Novel composite implant in craniofacial bone reconstruction. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery. 2012; 269: 623-628.
DOI: 10.1007/s00405-011-1607-x
Google Scholar
[42]
K.S. Chan, M. Koike, R.L. Mason, and T. Okabe. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants. Metallurgical and Materials Transactions A. 2013; 44: 1010.
DOI: 10.1007/s11661-012-1470-4
Google Scholar
[43]
M. Moesen, T. Craeghs, J. Kruth, and J. Schrooten. Robust beam compensation for laser-based additive manufacturing. Computer-Aided Design. 2011; 43: 876-888.
DOI: 10.1016/j.cad.2011.03.004
Google Scholar
[44]
A. Díaz-Lantada, A. Mosquera, J.L. Endrino, and P. Lafont. Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications. Journal of Physics: Conference Series. 2010; 252: 012003.
DOI: 10.1088/1742-6596/252/1/012003
Google Scholar
[45]
V. Bagaria, S. Deshpande, D.D. Rasalkar, A. Kuthe, and B.K. Paunipagar. Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. European journal of radiology. 2011; 80: 814.
DOI: 10.1016/j.ejrad.2010.10.007
Google Scholar
[46]
R.M. Taft, S. Kondor, and G.T. Grant. Accuracy of rapid prototype models for head and neck reconstruction. The Journal of prosthetic dentistry. 2011; 106: 399-408.
DOI: 10.1016/s0022-3913(11)60154-6
Google Scholar
[47]
D. Espalin, K. Arcaute, D. Rodriguez, F. Medina, M. Posner, R. Wicker. Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyping Journal. 2010; 16: 164-173.
DOI: 10.1108/13552541011034825
Google Scholar
[48]
A.B. Spierings, N. Herres, and G. Levy. Influence of the particle size distribution on surface quality and mechanical properties in AM steel tissues. Rapid Prototyping Journal. 2011; 17: 195-202.
DOI: 10.1108/13552541111124770
Google Scholar
[49]
B.R. Whatley, J. Kuo, C. Shuai, B.J. Damon, X. Wen. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing. Biofabrication. 2011; 3: 015004.
DOI: 10.1088/1758-5082/3/1/015004
Google Scholar
[50]
M. Gatto, G. Memoli, A. Shaw, N. Sadhoo, P. Gelat, R.A. Harris. Three-dimensional printing (3DP) of neonatal head phantom for ultrasound: thermocouple embedding and simulation of bone. Medical engineering & physics. 2012; 34: 929-937.
DOI: 10.1016/j.medengphy.2011.10.012
Google Scholar
[51]
A.B. Spierings, M. Schneider, R. Eggenberger. Comparison of density measurement techniques for additive manufactured metallic tissues. Rapid Prototyping Journal. 2011; 17: 380-386.
DOI: 10.1108/13552541111156504
Google Scholar
[52]
D. Constantine, An eye is forever, but is a liver? The New York Times, August 2, (2005).
Google Scholar
[53]
US Partnership for Education for Sustainable Development, National Education for Sustainability K-12 Student Learning Standards, Version 3 – October (2009).
Google Scholar