A Survey of Sustainable Design-Centered Integration for Medical Additive Manufacturing

Article Preview

Abstract:

A number of materials have been used for Medical Additive Manufacturing (MAM), such as stem cells, biopolymers, metals, bio-ceramics, and bio-glass. Recent research includes potential applications in the replacement of human tissues, organs, and bones by using the bio-printing technology. MAM also has been applied to build up a dummy prototype to simulate a complicated operation process before surgery. Sustainable design of MAM has a need for the development of the system to be environmentally, economically, and socially sustainable for its life cycle. This paper surveys the scope of the sustainability of MAM in terms of these three categories. The methodology and tools for assessment of the sustainable development of MAM processes are discussed. This paper analyzes several examples of the application of additive manufacturing in medicine which have been published in recent journals. There are four critical areas of the design-centered system integration for sustainable development in this survey. The investigations for MAM processes including (1) the materials, (2) the precision of the advanced machine tools and tissues, (3) the mechanisms of the processes, and (4) the mechanical properties of the implanted components after MAM. The results can be used as a reference for the assessment of future sustainable Design-Centered Integration for MAM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

635-643

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. P. Melchels, M. A. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher, Additive manufacturing of tissues and organs. Progress in Polymer Science; 2012; 37(8), 1079-1104.

DOI: 10.1016/j.progpolymsci.2011.11.007

Google Scholar

[2] M. Salmi, J. Tuomi, Kaija-Stiina Paloheimo, R. Björkstrand, M. Paloheimo, J. Salo, R. Kontio, K. Mesimäki and A. Mäkitie. Patient-specific reconstruction with 3D modeling and DMLS additive manufacturing. Rapid Prototyping Journal. Bradford: Emerald Group Publishing, Limited; 2012; 18: 209-214.

DOI: 10.1108/13552541211218126

Google Scholar

[3] M. Salmi, K. Paloheimo, J. Tuomi, J. Wolff, and A. Mäkitie (2013), Accuracy of medical models made by additive manufacturing (rapid manufacturing). Journal of Cranio-Maxillofacial Surgery, pp.1-7.

DOI: 10.1016/j.jcms.2012.11.041

Google Scholar

[4] T. Xu, J. J. Yoo, A. Atala, and D. Dice, Inkjet printing of tissues and cells, Patent No.: US 2009/0208577. (2009).

Google Scholar

[5] G. Villar, A. D. Graham, and H. Bayley, A Tissue-Like Printed. Material Science, 2013, 340(6128), 48-52.

DOI: 10.1126/science.1229495

Google Scholar

[6] F. Marga, K. Jakab, C. Khatiwala, B. Shepherd, S. Dorfman, B. Hubbard, and F. Gabor, (2012). Toward engineering functional organ modules by additive manufacturing. Biofabrication, 4(2), 022001.

DOI: 10.1088/1758-5082/4/2/022001

Google Scholar

[7] M. Nakamura, S. Iwanaga, C. Henmi, K. Arai, and Y. Nishiyama (2010). Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication, 2(1), 014110.

DOI: 10.1088/1758-5082/2/1/014110

Google Scholar

[8] S. Tasoglu, and U. Demirci (2012). Bioprinting for stem cell research. Trends in biotechnology.

Google Scholar

[9] K. Murphy, S. Dorfman, N. Smith, L. Bauwens, I. Sohn, and T. McDonald. U.S. Patent No. 0116568 A1. Washington, DC: U.S. Patent and Trademark Office. (2012).

Google Scholar

[10] A. Faulkner-Jones, S. Greenhough, J. A. King, J. Gardner, A. Courtney, and W. Shu (2013). Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication, 5(1), 015013.

DOI: 10.1088/1758-5082/5/1/015013

Google Scholar

[11] R. Chang, K. Emami, H. Wu, and W. Sun (2010). Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2(4), 045004.

DOI: 10.1088/1758-5082/2/4/045004

Google Scholar

[12] J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das (2005).

Google Scholar

[13] K. V. Wong, and A. Hernandez (2012), A review of Additive Manufacturing, ISRN Mechanical Engineering, Vol 2012, Article ID 208760.

Google Scholar

[14] Information on marketsandmarkets. com, (2012).

Google Scholar

[15] P. Liacouras, J. Garnes, N. Roman, A. Petrich, and G.T. Grant. Designing and manufacturing an auricular prosthesis using computed tomography, 3-dimensional photographic imaging, and additive manufacturing: a clinical report. The Journal of prosthetic dentistry. 2011; 105: 78-82.

DOI: 10.1016/s0022-3913(11)60002-4

Google Scholar

[16] D.R. Foster, M.J. Dapino, and S.S. Babu. Elastic constants of Ultrasonic Additive Manufactured Al 3003-H18. Ultrasonics. 2013; 53: 211.

DOI: 10.1016/j.ultras.2012.06.002

Google Scholar

[17] H. Werner, J. R. L. Dos Santos, R. Fontes, P. Daltro, E. Gasparetto, E. Marchiori, and S. Campbell. Additive manufacturing models of fetuses built from three‐dimensional ultrasound, magnetic resonance imaging and computed tomography scan data. Ultrasound in Obstetrics and Gynecology. 2010; 36: 355-361.

DOI: 10.1002/uog.7619

Google Scholar

[18] R.W. Lindsay, M. Herberg, P. Liacouras. The use of three-dimensional digital technology and additive manufacturing to create templates for soft-tissue reconstruction. Plastic and reconstructive surgery. 2012; 130: 629e.

DOI: 10.1097/prs.0b013e318262f509

Google Scholar

[19] S. Telfer, J. Pallari, J. Munguia, K. Dalgarno, M. McGeough, and J. Woodburn. Embracing additive manufacture: implications for foot and ankle orthosis design. BMC musculoskeletal disorders. 2012; 13: 84-84.

DOI: 10.1186/1471-2474-13-84

Google Scholar

[20] S. Rahmati, F. Abbaszadeh, and F. Farahmand. An improved methodology for design of custom-made hip prostheses to be fabricated using additive manufacturing technologies. Rapid Prototyping Journal. 2012; 18: 389-400.

DOI: 10.1108/13552541211250382

Google Scholar

[21] D. Cook, V. Gervasi, R. Rizza, S. Kamara, X. Liu. Additive fabrication of custom pedorthoses for clubfoot correction. Rapid Prototyping Journal. 2010; 16: 189-193.

DOI: 10.1108/13552541011034852

Google Scholar

[22] M. Kudou, D. Ejima, H. Sato, R. Yumioka, T. Arakawa, and K. Tsumoto. Refolding single-chain antibody (scFv) using lauroyl-L-glutamate as a solubilization detergent and arginine as a refolding additive. Protein expression and purification. 2011; 77: 68-74.

DOI: 10.1016/j.pep.2010.12.007

Google Scholar

[23] M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri. Manufacturing and processing of NiTi implants: A review. Progress in Materials Science. 2012; 57: 911-946.

DOI: 10.1016/j.pmatsci.2011.11.001

Google Scholar

[24] E. Atzeni, L. Iuliano, P. Minetola, and A. Salmi. Proposal of an innovative benchmark for accuracy evaluation of dental crown manufacturing. Computers in biology and medicine. 2012; 42: 548.

DOI: 10.1016/j.compbiomed.2012.01.009

Google Scholar

[25] G.K. Sándor, S. Miettinen, V.J. Tuovinen, J. Wolff, M. Patrikoski, J. Jokinen, E. Nieminen, B. Mannerström, O. Lappalainen, R. Seppänen, and S. Miettinen. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. 2013; 71: 938.

DOI: 10.1016/j.joms.2012.11.014

Google Scholar

[26] A. Rainer, S.M. Giannitelli, D. Accoto, S. De Porcellinis, E. Guglielmelli, and M. Trombetta. Load-Adaptive Scaffold Architecturing: A Bioinspired Approach to the Design of Porous Additively Manufactured Scaffolds with Optimized Mechanical Properties. Annals of Biomedical Engineering. 2012; 40: 966-975.

DOI: 10.1007/s10439-011-0465-4

Google Scholar

[27] J.H.P. Pallari, K.W. Dalgarno, and J. Woodburn. Mass customization of foot orthoses for rheumatoid arthritis using selective laser sintering. IEEE transactions on bio-medical engineering. 2010; 57: 1750.

DOI: 10.1109/tbme.2010.2044178

Google Scholar

[28] H.D.A. Almeida, and P. J. da Silva Bártolo. Virtual topological optimisation of scaffolds for rapid prototyping. Medical Engineering and Physics. 2010; 32: 775-782.

DOI: 10.1016/j.medengphy.2010.05.001

Google Scholar

[29] S. Ayyildiz, C. Sahin, O.M. Akgün, F. Basak. Combined treatment with laser sintering and zirconium: a case report of dentinogenesis imperfecta. Case reports in dentistry. 2013; 2013: 745959.

DOI: 10.1155/2013/745959

Google Scholar

[30] K. Manukyan, N. Amirkhanyan, S. Aydinyan, V. Danghyan, R. Grigoryan, N. Sarkisyan, G. Gasparyan, R. Aroutiounian, and S. Kharatyan. Novel NiZr-based porous biomaterials: Synthesis and in vitro testing. Chemical Engineering Journal. 2010; 162: 406-414.

DOI: 10.1016/j.cej.2010.05.042

Google Scholar

[31] J.G.G. Dobbe, J.C. Vroemen, S.D. Strackee, and G.J. Streekstra. Patient-tailored plate for bone fixation and accurate 3D positioning in corrective osteotomy. Medical & biological engineering & computing. 2013; 51: 19.

DOI: 10.1007/s11517-012-0959-8

Google Scholar

[32] C. Flege, M. Jobmann, K. Wissenbach, et al. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting. Journal of Materials Science : Materials in Medicine. 2013; 24: 241.

DOI: 10.1007/s10856-012-4779-z

Google Scholar

[33] D. Yoo. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds. Medical engineering & physics. 2012; 34: 762.

DOI: 10.1016/j.medengphy.2012.05.008

Google Scholar

[34] M.J.J. Liu, S.M. Chou, C.K. Chua, B.C.M. Tay, and B.K. Ng. The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography. Medical engineering & physics. 2013; 35: 253.

DOI: 10.1016/j.medengphy.2011.09.029

Google Scholar

[35] I.T. Ozbolat, and Y. Yu. Bioprinting toward organ fabrication: challenges and future trends. IEEE transactions on bio-medical engineering. 2013; 60: 691-699.

DOI: 10.1109/tbme.2013.2243912

Google Scholar

[36] M. Gill, M.J. Garber, Y. Hua, and D. Jenke. Development and Validation of an HPLC-MS-MS Method For Quantitating Bis(2, 2, 6, 6-tetramethyl-4- piperidyl) Sebacate (Tinuvin 770) and a Related Substance in Aqueous Extracts of Plastic Materials. Journal of Chromatographic Science. 2010; 48: 200-207.

DOI: 10.1093/chromsci/48.3.200

Google Scholar

[37] N.J. Castro, S.A. Hacking, and L.G. Zhang. Recent Progress in Interfacial Tissue Engineering Approaches for Osteochondral Defects. Annals of Biomedical Engineering. 2012; 40: 1628-1640.

DOI: 10.1007/s10439-012-0605-5

Google Scholar

[38] A. Monfared, G. Mitteramskogler, S. Gruber, J. Salisbury, J. Kenneth, J. Stampfl, and N.H. Blevins. High-fidelity, inexpensive surgical middle ear simulator. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2012; 33: 1573.

DOI: 10.1097/mao.0b013e31826dbca5

Google Scholar

[39] B. Derby. Printing and prototyping of tissues and scaffolds. Science (New York, N.Y. ). 2012; 338: 921-926.

DOI: 10.1126/science.1226340

Google Scholar

[40] O. Diegel, S. Singamneni, S. Reay, and A. Withell. Tools for Sustainable Product Design: Additive Manufacturing. Journal of Sustainable Development. 2010; 3: 68.

DOI: 10.5539/jsd.v3n3p68

Google Scholar

[41] M.J. Peltola, P.K. Vallittu, V. Vuorinen, A.A.J. Aho, A. Puntala, and K.M.J. Aitasalo. Novel composite implant in craniofacial bone reconstruction. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery. 2012; 269: 623-628.

DOI: 10.1007/s00405-011-1607-x

Google Scholar

[42] K.S. Chan, M. Koike, R.L. Mason, and T. Okabe. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants. Metallurgical and Materials Transactions A. 2013; 44: 1010.

DOI: 10.1007/s11661-012-1470-4

Google Scholar

[43] M. Moesen, T. Craeghs, J. Kruth, and J. Schrooten. Robust beam compensation for laser-based additive manufacturing. Computer-Aided Design. 2011; 43: 876-888.

DOI: 10.1016/j.cad.2011.03.004

Google Scholar

[44] A. Díaz-Lantada, A. Mosquera, J.L. Endrino, and P. Lafont. Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications. Journal of Physics: Conference Series. 2010; 252: 012003.

DOI: 10.1088/1742-6596/252/1/012003

Google Scholar

[45] V. Bagaria, S. Deshpande, D.D. Rasalkar, A. Kuthe, and B.K. Paunipagar. Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. European journal of radiology. 2011; 80: 814.

DOI: 10.1016/j.ejrad.2010.10.007

Google Scholar

[46] R.M. Taft, S. Kondor, and G.T. Grant. Accuracy of rapid prototype models for head and neck reconstruction. The Journal of prosthetic dentistry. 2011; 106: 399-408.

DOI: 10.1016/s0022-3913(11)60154-6

Google Scholar

[47] D. Espalin, K. Arcaute, D. Rodriguez, F. Medina, M. Posner, R. Wicker. Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyping Journal. 2010; 16: 164-173.

DOI: 10.1108/13552541011034825

Google Scholar

[48] A.B. Spierings, N. Herres, and G. Levy. Influence of the particle size distribution on surface quality and mechanical properties in AM steel tissues. Rapid Prototyping Journal. 2011; 17: 195-202.

DOI: 10.1108/13552541111124770

Google Scholar

[49] B.R. Whatley, J. Kuo, C. Shuai, B.J. Damon, X. Wen. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing. Biofabrication. 2011; 3: 015004.

DOI: 10.1088/1758-5082/3/1/015004

Google Scholar

[50] M. Gatto, G. Memoli, A. Shaw, N. Sadhoo, P. Gelat, R.A. Harris. Three-dimensional printing (3DP) of neonatal head phantom for ultrasound: thermocouple embedding and simulation of bone. Medical engineering & physics. 2012; 34: 929-937.

DOI: 10.1016/j.medengphy.2011.10.012

Google Scholar

[51] A.B. Spierings, M. Schneider, R. Eggenberger. Comparison of density measurement techniques for additive manufactured metallic tissues. Rapid Prototyping Journal. 2011; 17: 380-386.

DOI: 10.1108/13552541111156504

Google Scholar

[52] D. Constantine, An eye is forever, but is a liver? The New York Times, August 2, (2005).

Google Scholar

[53] US Partnership for Education for Sustainable Development, National Education for Sustainability K-12 Student Learning Standards, Version 3 – October (2009).

Google Scholar