Physicochemical Properties of Biodegradable Tilapia Skin Gelatin Film and Gelatin-Polysaccharide Based Composite Films

Article Preview

Abstract:

The present study was to investigate the film forming properties of tilapia skin gelatin as affected by the addition of 2%, 5% Arabic gum or pectin (g/g gelatin), as well as 1%, 2% glutaraldehyde (GTA) (g/g gelatin) in an attempt to improve gelatin film properties. Tensile strength (TS) and transparency of gelatin film were improved 36.6% and 30.3% by the addition of Arabic gum, respectively, while the water vapor permeability (WVP) was not affected. The addition of pectin had less effect on the film tensile strength and transparency, but led to 41.7% of increase in WVP. Tensile strength and WVP of gelatin-arabic gum composite film cross-linked with 2% GTA were better than those of 1% GTA cross-linked composite film, though the extensibility and transparency were slightly weak. The FTIR spectra of gelatin films showed that both Arabic gum and pectin formed cross-linkages with gelatin protein molecules, while GTA facilitated the formation of intermolecular bonds, resulting in more stable films.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

1133-1140

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Zhang, Y. Wang, J. L. Herring and J. H. Oh: J Food Sci Vol. 72 (2007), p. C498.

Google Scholar

[2] Y. Pranoto, C. M. Lee and H. J. Park: LWT-Food Sci Technol Vol. 40 (2007), p.766.

Google Scholar

[3] K. Limpisophon, M. Tanaka, W. Weng, S. Abe and K. Osako: Food Hydrocolloid Vol. 23 (2009), p. (1993).

Google Scholar

[4] J. Gómez-Estaca, P. Montero, F. Fernández-Martín and M. C. Gómez-Guillén: J Food Eng Vol. 90(2009 ), p.480.

DOI: 10.1016/j.jfoodeng.2008.07.022

Google Scholar

[5] M. Ahmad and S. Benjakul: Food Hydrocolloid Vol. 25 (2011), p.381.

Google Scholar

[6] L.H. Niu, X. Zhou, C.Q. Yuan, Y. Bai, K.Q. Lai, F.X. Yang and Y.Q. Huang: Food Hydrocolloid Vol. 33 (2013), p.336.

Google Scholar

[7] B. Jamilah, K.W. Tan, M.R. Umi Hartina and A. Azizah: Food Hydrocolloid Vol. 25 (2011), p.1256.

DOI: 10.1016/j.foodhyd.2010.11.023

Google Scholar

[8] A. A. Karim and R. Bhat: Food Hydrocolloid Vol. 23 (2009), p.563.

Google Scholar

[9] B. Jamilah and K. G. Harvinder: Food Chem Vol. 77 (2002), p.81.

Google Scholar

[10] K. Y. Lee, J. Shim and H. G. Lee: Carbohyd Polym Vol. 56 (2004), p.251.

Google Scholar

[11] E. Boanini, K. Rubini, S. Panzavolta and A. Bigi: Acta Biomaterialia Vol. 6-2 (2010), p.383.

DOI: 10.1016/j.actbio.2009.06.015

Google Scholar

[12] W. Tongdeesoontorn, L. J. Mauer, S. Wongruong, P. Sriburi and P. Rachtanapun: Int J Polym Mater Vol. 61 (2012), p.778.

DOI: 10.1080/00914037.2011.610049

Google Scholar

[13] S. F. Hosseini, M. Rezaei, M. Zandi and F. F. Ghavi: Food Chem Vol. 136 (2013), p.1490.

Google Scholar

[14] M. P. Yadav, J. Manuel Igartuburu, Y. Yan and E. A. Nothnagel: Food Hydrocolloid Vol. 21 (2007), p.297.

Google Scholar

[15] Z. -Q. Zhang, C. -H. Pan and D. Chung: Food Res Int Vol. 44 (2011), p.1000.

Google Scholar

[16] M. Hiorth, A. -L. Kjøniksen, K. D. Knudsen, S. A. Sande and B. Nyström: Eur Polym J Vol. 41 (2005), p.1718.

Google Scholar

[17] R. A. Carvalho and C. R. F. Grosso: Food Hydrocolloid Vol. 18 (2004), p.717.

Google Scholar

[18] M. Jiang, S. Liu, X. Du and Y. Wang: Food Hydrocolloid Vol. 24 (2010), p.105.

Google Scholar

[19] S. Farris, J. Song and Q. Huang: J. Agric. Food Chem Vol. 58 (2010), p.998.

Google Scholar

[20] A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini and N. Roveri: Biomaterials Vol. 22 (2001), p.763.

DOI: 10.1016/s0142-9612(00)00236-2

Google Scholar

[21] X. J. Zheng, J. W. Li and K. Y. Tang: China Leather Vol. 41 (2012), p.51. In Chinese.

Google Scholar

[22] S. Grossman, R. Gan, M. Bergman and Holon, U.S. Patent 5, 093, 474. (1992).

Google Scholar

[23] T. M. C. Maria, R. A. de Carvalho, P. J. A. Sobral, A. Habitante and J. Solorza-Feria: J Food Eng Vol. 87 (2008), p.191.

Google Scholar

[24] ASTM. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Standard designation D882-09. Annual book of ASTM standards. Philadelphia: ASTM (2009).

Google Scholar

[25] M. S. Hoque, S. Benjakul and T. Prodpran: Food Hydrocolloid Vol. 25 (2011), p.82.

Google Scholar

[26] ASTM. Standard Test Methods for Water Vapor Transmission of Materials. Standard designation E96-00. Annual book of ASTM standards. Philadelphia: ASTM (2000).

Google Scholar

[27] S. Farris, K. M. Schaich, L. S. Liu, P. H. Cooke, L. Piergiovann and K. L. Yam: Food Hydrocolloid Vol. 25 (2011), p.61.

Google Scholar

[28] B. B. Doyle, E. G. Bendit and E. R. Blout: Biopolymers Vol. 14 (1975), p.937.

Google Scholar

[29] I. Yakimets, N. Wellner, A. C. Smith, R. H. Wilson, I. Farhat and J. Mitchell: Polymer Vol. 46 (2005), p.12577.

DOI: 10.1016/j.polymer.2005.10.090

Google Scholar

[30] J. Bandekar: BBA-Bioenergetics Vol. 1120 (1992), p.123.

Google Scholar

[31] F. Lavialle, R. G. Adams and I. W. Levin: Biochemistry US Vol. 21 (1982), p.2305.

Google Scholar

[32] M. Jackson, L. -P. I. Choo, P. H. Watson, W. C. Halliday and H. H. Mantsc: BBA-Bioenergetics Vol. 1270 (1995), p.1.

Google Scholar