[1]
Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): pp.215-33.
Google Scholar
[2]
Almeida, M.I., R.M. Reis, and G.A. Calin, MicroRNA history: discovery, recent applications, and next frontiers. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2011. 717(1): pp.1-8.
DOI: 10.1016/j.mrfmmm.2011.03.009
Google Scholar
[3]
Zhang, B., et al., Plant microRNA: a small regulatory molecule with big impact. Dev Biol, 2006. 289(1): pp.3-16.
Google Scholar
[4]
Kidner, C.A. and R.A. Martienssen, The developmental role of microRNA in plants. Curr Opin Plant Biol, 2005. 8(1): pp.38-44.
Google Scholar
[5]
Chen, X., MicroRNA biogenesis and function in plants. FEBS Lett, 2005. 579(26): pp.5923-31.
DOI: 10.1016/j.febslet.2005.07.071
Google Scholar
[6]
Chen, X., A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004. 303(5666): pp.2022-5.
DOI: 10.1126/science.1088060
Google Scholar
[7]
Yang, T., L. Xue, and L. An, Functional diversity of miRNA in plants. Plant Science, 2007. 172(3): pp.423-432.
DOI: 10.1016/j.plantsci.2006.10.009
Google Scholar
[8]
Xiao, C. and K. Rajewsky, MicroRNA control in the immune system: basic principles. Cell, 2009. 136(1): pp.26-36.
DOI: 10.1016/j.cell.2008.12.027
Google Scholar
[9]
Khraiwesh, B., J. -K. Zhu, and J. Zhu, Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012. 1819(2): pp.137-148.
DOI: 10.1016/j.bbagrm.2011.05.001
Google Scholar
[10]
Kurihara, Y. and Y. Watanabe, Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A, 2004. 101(34): pp.12753-8.
DOI: 10.1073/pnas.0403115101
Google Scholar
[11]
Jagadeeswaran, G., A. Saini, and R. Sunkar, Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta, 2009. 229(4): pp.1009-14.
DOI: 10.1007/s00425-009-0889-3
Google Scholar
[12]
Sunkar, R., Y.F. Li, and G. Jagadeeswaran, Functions of microRNAs in plant stress responses. Trends Plant Sci, 2012. 17(4): pp.196-203.
DOI: 10.1016/j.tplants.2012.01.010
Google Scholar
[13]
Jones, J.D. and J.L. Dangl, The plant immune system. Nature, 2006. 444(7117): pp.323-9.
Google Scholar
[14]
J., G., Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol., 2005. 43: pp.205-227.
DOI: 10.1146/annurev.phyto.43.040204.135923
Google Scholar
[15]
Spoel, S.H. and X. Dong, Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe, 2008. 3(6): pp.348-51.
DOI: 10.1016/j.chom.2008.05.009
Google Scholar
[16]
Mendgen, K. and M. Hahn, Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 2002. 7(8): pp.352-356.
DOI: 10.1016/s1360-1385(02)02297-5
Google Scholar
[17]
Jin, H., Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett, 2008. 582(18): pp.2679-84.
DOI: 10.1016/j.febslet.2008.06.053
Google Scholar
[18]
Chisholm, S.T., et al., Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006. 124(4): pp.803-14.
DOI: 10.1016/j.cell.2006.02.008
Google Scholar
[19]
Zhang, W., et al., Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol, 2011. 75(1-2): pp.93-105.
DOI: 10.1007/s11103-010-9710-8
Google Scholar
[20]
Bari, R. and J.D.G. Jones, Role of plant hormones in plant defence responses. (2008).
Google Scholar
[21]
Ahuja, I., R. Kissen, and A.M. Bones, Phytoalexins in defense against pathogens. Trends Plant Sci, 2012. 17(2): pp.73-90.
DOI: 10.1016/j.tplants.2011.11.002
Google Scholar
[22]
Steinkellner, S., et al., Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions. Molecules, 2007. 12: pp.1290-1306.
DOI: 10.3390/12071290
Google Scholar
[23]
Yin, Z., et al., Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots. PLoS One, 2012. 7(4): p. e35765.
DOI: 10.1371/journal.pone.0035765
Google Scholar
[24]
Lu, S., Y.H. Sun, and V.L. Chiang, Stress-responsive microRNAs in Populus. Plant J, 2008. 55(1): pp.131-51.
Google Scholar
[25]
Li, Y., et al., Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol, 2014. 164(2): pp.1077-92.
Google Scholar
[26]
Lu, S., et al., Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 2005. 17(8): pp.2186-203.
DOI: 10.1105/tpc.105.033456
Google Scholar
[27]
Lu, S., et al., MicroRNAs in loblolly pine (Pinus taeda L. ) and their association with fusiform rust gall development. Plant J, 2007. 51(6): pp.1077-98.
DOI: 10.1111/j.1365-313x.2007.03208.x
Google Scholar
[28]
De Jonge, R., et al., Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science, 2010. 329(5994): pp.953-5.
DOI: 10.1126/science.1190859
Google Scholar
[29]
Liu, Q. and Y.Q. Chen, Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun, 2009. 384(1): pp.1-5.
Google Scholar
[30]
Robert-Seilaniantz, A., et al., Pathological hormone imbalances. Curr Opin Plant Biol, 2007. 10(4): pp.372-9.
Google Scholar
[31]
Xin, M., et al., Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L. ). BMC Plant Biol, 2010. 10: p.123.
DOI: 10.1186/1471-2229-10-123
Google Scholar
[32]
Jayachandran, B., M. Hussain, and S. Asgari, An insect trypsin-like serine protease as a target of microRNA: utilization of microRNA mimics and inhibitors by oral feeding. Insect Biochem Mol Biol, 2013. 43(4): pp.398-406.
DOI: 10.1016/j.ibmb.2012.10.004
Google Scholar
[33]
Liu, Q. and Y.Q. Chen, A new mechanism in plant engineering: the potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol Adv, 2010. 28(3): pp.301-7.
DOI: 10.1016/j.biotechadv.2010.01.002
Google Scholar