Sealing of Sapphire Infrared Windows by Ultrasonic Interfacial Deposition Soldering

Article Preview

Abstract:

Sapphire/metal soldering joints are widely needed in various optical instruments. Traditional soldering methods are expensive and time consuming, because they usually involve a sapphire surface metallization procedure and a vacuum soldering procedure. In this study, we sealed infrared sapphire windows using a novel ultrasonic soldering method in the ambient atmosphere, with Sn-Zn-Al alloy as the solder. The wetting and bonding at the sapphire/solder and solder/metal-tube interfaces were realized by ultrasound. The microstructure of the joints was revealed by means of scanning electron microscope (SEM). The gas impermeability of the samples was investigated. This new method is very simple and cost-saving. The reliability of the samples made by this new method is equal to that made by traditional method. This is the first application of the ultrasonic interfacial deposition brazing and soldering (UIDBS) method to a practical device. We hope this method to be applied to other optical devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

2074-2078

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Karioja, K. Keranen and K. Kautio, in: Optical Sensing and Detection, edited by F. Berghmans, volume 7726 of Spie-Int Soc Optical Engineering, Bellingham (2010).

Google Scholar

[2] G. J. Yuan, Y. H. Lu, R. J. Luo: Vacu. Sci. Tech. (China). Vol. 24(2004), p.299.

Google Scholar

[3] T. Burkhardt, M. Hornaff and E. Beckert, in: Laser-Based Micro- and Nanopackaging and Assembly Iii, edited by W. Pfleging, volume 7202 of Spie-Int Soc Optical Engineering, Bellingham (2009).

DOI: 10.1117/12.807986

Google Scholar

[4] G. Bernhardt, C. Silvestre and N. LeCursi: Sens. Actuat. B-Chem. Vol. 77(2001), p.368.

Google Scholar

[5] H. Y. Xia, A. P. Wu and Y. L. Fan: Surf. Coat. Tech. Vol. 206(2012), p. (2098).

Google Scholar

[6] B. E. Noltingk and E.A. Neppiras: Nature. Vol. 166(1950), p.615.

Google Scholar

[7] D. Oelschlagel, H. Abe, K. Yamaji and Y. Yonezawa: Weld. J. Vol. 56(1977), p.21.

Google Scholar

[8] B. E. Noltingk, E.A. Neppiras: Nature. Vol. 166 (1950), p.615.

Google Scholar

[9] P. Saxty: Metallurgia. Vol. 62 (1995), p.287.

Google Scholar

[10] K. S. Suslick and D. J. Flannigan: Annu. Rev. Phys. Chem. Vol. 59(2007), p.659.

Google Scholar

[11] E. A. Brujan, T. Ikeda and Y. Matsumoto: Exper. Therm. Fluid. Sci. Vol. 32(2008), p.1188.

Google Scholar

[12] R. M. Wagterveld, L. Boels and M. J. Mayer: Ultrason. Sonochem. Vol. 18(2011), p.216.

Google Scholar

[13] A. Vogel and W. Lauterborn:J. Acoust. Soc. Amer. Vol. 84(1988), p.719.

Google Scholar

[14] J. H. Wei, B. H. Deng, X. Q. Gao: J. Alloy. Comp. Vol. 576(2013), p.386.

Google Scholar

[15] K. Kago, K. Suetsugu, S. Hibino: Mater. Trans. Vol. 45 (2004), p.703.

Google Scholar

[16] K. Graff: Insights. Vol. 20 (2007), p.1.

Google Scholar

[17] M. Naka and K. M. Hafez, J. Mater. Sci. Vol. 38(2003), p.3491.

Google Scholar

[18] T. Nagaoka, Y. Morisada and M. Fukusumi: Weld. Int. Vol. 23(2009), p.879.

Google Scholar

[19] J. S. Lee, K. Ha and Y. J. Lee: Adv. Mater. Vol. 17(2005), p.837.

Google Scholar

[20] W. Cui, C. Wang and J. Yan: Ultrason. Sonochem. Vol. 20(2013), p.196.

Google Scholar

[21] M. Naka, K. M. Hafez: J. Mater. Sci. Vol. 38(2003), p.3491.

Google Scholar

[22] M. Naka: Sci. Technol. Weld. Join. Vol. 9(2004), p.560.

Google Scholar

[23] R. Kolenak, P. Zubor: Weld. World. Vol. 49, p.546.

Google Scholar