Synthesis of Sulfur-Doped Graphene from Sulfonated Polystyrene

Article Preview

Abstract:

Herein, sulfonated polystyrene thin film was applied as the precursor to synthesize sulfur (S)-doped graphene via thermal annealing process. S atoms were proved to be successfully doped into the lattice of graphene sheets according to the analyses of high resolution transmission microscopy (HRTM) and the corresponding energy dispersive X-Ray spectroscopy (EDX). The high D band detected in the Raman spectrum of S-doped graphene indicates the large amount of defects was introduced into the lattice of graphene, and the in-plane crystallite sizes were calculated to be ca. 21.7 nm. Our method provides an efficient and simple approach for the synthesis of S-doped graphene, which would promote the research for graphene based devices in widespread applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

235-238

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[1] K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim and A.K. Geim: Science Vol. 315 (2007), p.1379.

DOI: 10.1126/science.1137201

Google Scholar

[2] K.P. Loh, Q.L. Bao, P.K. Ang and J.X. Yang: J. Mater. Chem. Vol. 20 (2010), p.2277.

Google Scholar

[3] C. Lee, X.D. Wei, J.W. Kysar and J. Hone: Science Vol. 321 (2008), p.385.

Google Scholar

[4] P.A. Denis: Chem. Phys. Lett. Vol. 492 (2010), p.251.

Google Scholar

[5] P.A. Denis, R. Faccio and A.W. Mombru: ChemPhysChem. Vol. 10 (2009), p.715.

Google Scholar

[6] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang and J.R. Gong: Nano Lett. Vol. 10 (2010), p.4975.

Google Scholar

[7] L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare and C.N.R. Rao: Adv. Mater. Vol. 21 (2009), p.4726.

Google Scholar

[8] P.N. Rylander and D. S. Tarbell: J. Am. Chem. Soc. Vol. 72 (1950), p.3021.

Google Scholar

[9] H. Gao, Z. Liu, L. Song, W. Guo, W. Gao, L Ci, A. Rao, R. Vajtai and P.M. Ajayan: Nanotechnology Vol. 23 (2012), p.275605.

DOI: 10.1088/0957-4484/23/27/275605

Google Scholar

[10] Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen and S. Huang: ACS nano Vol. 6 (2011), p.205.

Google Scholar

[11] S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen: Adv. Fun. Mater. Vol. 22 (20112), p.3634.

Google Scholar

[12] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu and J.M. Tour: Nature Vol. 468 (2010), p.549.

Google Scholar

[13] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff: Science Vol. 324 (2009), p.1312.

DOI: 10.1126/science.1171245

Google Scholar

[14] D. Wei, Y. Liu, Y. Wang, H. Zhang, L and Huang, G. Yu: Nano lett. Vol. 9 (2009), p.1752.

Google Scholar

[15] L. G. Cançado1, K. Takai1, T. Enoki1, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago and M. A. Pimenta: Appl. Phys. Lett. Vol. 88 (2006), p.163106.

DOI: 10.1063/1.2196057

Google Scholar