Modelisation of Calorific Capacity by the Debye and Brillouin Functions for the Formalization of the Magnetothermal Problem

Article Preview

Abstract:

In the induction heating, in the calculation of the electric machines losses, in the mechanical engineering, in the calculation of the thermal field distribution, the equations of Maxwell and heat equation are required. Those utilize the magnetic permeability and the calorific capacity at constant volume which strongly depends on the temperature and the temperature of Debye, which is a constant for each metal.The Physics of the Solid State,through the study of the acoustic and thermal properties of metals, establishes a formula giving the calorific capacity at constant volume by an integral which one can calculate only numerically.That is due to the form even of the function of distribution of Debye. The purpose of this work is to propose an analytical formulation of the calorific capacity at constant volume by analogy with the Brillouin's function largely used in ferromagnetism.This formulation has the advantage to put at the disposal of the Engineer specific concepts to the Physicist. Another advantage is the facility of ‘’to keep’’ this new formulation by functions which come under the domain of Numerical Analysis, such spline function or other.This same formulation will also allow finding an analytical formulation of internal energy whereas it was given by an integral which one can calculate only numerically.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

2449-2456

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kittel C.: Introduction à la Physique de l'État Solide. Dunod (1972).

Google Scholar

[2] Sproull R.L.: Éléments de Physique Moderne. Masson, (1967).

Google Scholar

[3] Vassiliev A.: Introduction à la Physique Statistique. Édition Mir, Moscou.

Google Scholar

[4] Merouane B.: Chauffage par induction par onduleur à résonance série : étude phénoménologique et modélisation électrique. Thèse de Magister, USTO, (1988).

Google Scholar

[5] Merouane B.: Modélisation de la capacité calorifique par les fonctions de Brillouin et de Debye". 8èmes Journées Internationales de Thermique (JITH, 97), pp.79-86, Volume 2; Marseille 7-10 Juillet 1997 (Université de Provence).

Google Scholar

[6] Merouane B. Traitement de surface par le procédé de chauffage par induction. Applications. "2èmes Journées Scientifiques et Techniques de l,I.N.H.;I.N.H. Boumerdès, Algérie, 05 au 06 Mai 97.

Google Scholar

[7] Technique de l'Ingénieur: Théorie du magnétisme,. D175-1.

Google Scholar

[8] Labbé V. Modélisation numérique du chauffage par induction. Approche éléments finis et calcul parallèle. Thèse 22/04/2002, École nationale Supérieure des Mines, Paris.

Google Scholar

[9] Velasquez Hernandez R. Contributions to the Mathematical Study of Some Problems in Magnetodynamics and induction heating. PHD Dissertation 2008, Universidad de Santiago de Compostella.

Google Scholar

[10] Rudnev,V., Simulation of Induction Heat Treating, ASM Handbook series, vol. 22B Metals. Process Simulation, editors D.U. Furrer and S.L. Semiatin, ASM Int., 2010, pp.501-546.

DOI: 10.31399/asm.hb.v22b.a0005533

Google Scholar

[11] Blache C.: Conduction Heating with Multiphysics Coupling. FLUX3D Application, CEDRAT, Meylan, (2006).

Google Scholar