[1]
K.L. Johnson, Contact Mechanics, Cambridge University Press, (1985).
Google Scholar
[2]
J.A. Hurtado, K. Kim, P. Roy. Soc. Lond. A 455 (1999) 3363-3400.
Google Scholar
[3]
B. Bhushan, J.N. Israelachvili, U. Landman, Nature 374 (1995) 607-616.
Google Scholar
[4]
H. Spikes, Tribol. Int. 34 (2001) 789-799.
Google Scholar
[5]
B. Bhushan, Wear 259 (2005) 1507-1531.
Google Scholar
[6]
R. Maboudian, MRS BULL. 23 (1998) 47-51.
Google Scholar
[7]
B. Bhushan, Micro/Nanotribology and its Applications, Kluwer Academic Publishers, Dordrecht, Netherlands, (1997).
Google Scholar
[8]
H. Liu, B. Bhushan, J. Vac. Sci. Technol. A 21 (2003) 1528-1538.
Google Scholar
[9]
B. Bhushan, Tribol. Int. 28 (1995) 85-96.
Google Scholar
[10]
M. Roya, C. Carlo, J. Adhesion Sci. Technol. 17 (2003) 583-591.
Google Scholar
[11]
U. Beerschwinger, T. Albrecht, D. Mathieson, R.L. Reuben, S.J. Yang, M. Taghizadeh, Wear 181-183 (1995) 426-435.
Google Scholar
[12]
A.M. Homola, J.N. Israelachvili, P.M. McGuiggan, M.L. Gee, Wear 136 (1990) 65-83.
Google Scholar
[13]
L. Zhang, I. Zarudi, Int. J. Mech. Sci. 43 (2001) 1985-(1996).
Google Scholar
[14]
M. Hirano, K. Shinjo, R. Kaneko, Y. Murata, Phys. Rev. Lett. 78 (1997) 1448-1451.
Google Scholar
[15]
M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, J.A. Heimberg, H.W. Zandbergen, Phys. Rev. Lett. 92 (2004) 126101.
DOI: 10.1103/physrevlett.92.126101
Google Scholar
[16]
A. Socoliuc, E. Gnecco, S. Maier, O. Pfeiffer, A. Baratoff, R. Bennewitz, E. Meyer, Science 313 (2006) 207-210.
DOI: 10.1126/science.1125874
Google Scholar
[17]
U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Science 248 (1990) 454-461.
Google Scholar
[18]
U. Landman, W.D. Luedtke, J. Vac. Sci. Technol. B 9 (1991) 414-423.
Google Scholar
[19]
J. Song, D.J. Srolovitz, J. Appl. Phys. 104 (2008) 124312 - 124312-11.
Google Scholar
[20]
J. Song, D.J. Srolovitz, Acta Mater. 54 (2006) 5305-5312.
Google Scholar
[21]
D. Mulliah, S.D. Kenny, R. Smith, C.F. Sanz-Navarro, Nanotechnology 15 (2004) 243-249.
Google Scholar
[22]
J. Belak, I.F. Stowers, The indentation and scraping of a metal surface: A Molecular Dynamics study, in: I.L. Singer, H.M. Pollock (Eds), Fundamentals of Friction: Macroscopic and Microscopic Processes, Kluwer Academic Publisher, Dordrecht, (1992).
DOI: 10.1007/978-94-011-2811-7_25
Google Scholar
[23]
L. Zhang, H. Tanaka, Wear 211 (1997) 44-53.
Google Scholar
[24]
L. Zhang, H. Tanaka, Tribol. Int. 31 (1998) 425-433.
Google Scholar
[25]
P. Heino, H. Häkkinen, K. Kaski, Europhys. Lett. 41 (1998) 273-278.
Google Scholar
[26]
W.K. Liu, E.G. Karpov, S. Zhang, H.S. Park, Comput. Methods Appl. Mech. Engrg. 193 (2004) 1529-1578.
Google Scholar
[27]
E.B. Tadmor, M. Ortiz, R. Phillips, Philos. Mag. A 73 (1996) 1529-1563.
Google Scholar
[28]
E.B. Tadmor, R. Phillips, M. Ortiz, Langmuir 12 (1996) 4529–4534.
Google Scholar
[29]
V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Phys. Rev. Lett. 80 (1998) 742-745.
Google Scholar
[30]
V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, M. Ortiz, J. Mech. Phys. Sol. 47 (1999) 611-642.
Google Scholar
[31]
R.E. Miller, E.B. Tadmor, J. Comput. Aided Mater. Des. 9 (2002) 203-239.
Google Scholar
[32]
S. P. Xiao, W. X. Yang, Int. J. Comput. Methods 2 (2004) 293-313.
Google Scholar
[33]
S. P. Xiao, W. X. Yang, Comput. Mater. Sci. 37 (2006) 374-379.
Google Scholar
[34]
S. P. Xiao, W. X. Yang, Int. J. Numer. Meth. Eng. 69 (2007) 2099-2125.
Google Scholar
[35]
W. X. Yang, S. P. Xiao, Comput. Mater. Sci. 41 (2008) 431-439.
Google Scholar
[36]
R. Phillips, D. Rodney, V. Shenoy, E. Tadmor, M. Ortiz, Modeling Simul. Mater. Sci. Eng. 7 (1999) 769.
Google Scholar
[37]
E.B. Tadmor, R. Miller, R. Phillips, M. Ortiz, J. Mater. Res. 14 (1999) 2233-2250.
Google Scholar
[38]
J. Jin, S.A. Shevlin, Z.X. Guo, Acta Mater. 56 (2008) 4358-4368.
Google Scholar
[39]
J.W. Li, Y.S. Ni, Y.H. Lin, C. Luo, W.G. Jiang, Acta Metall. Sin. (in Chinese) 45 (2009) 129-136.
Google Scholar
[40]
J. Li, Y. Ni, H. Wang, J. Mei, Nanoscale Res. Lett. 5 (2010).
Google Scholar
[41]
R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Modeling Simul. Mater. Sci. Eng. 6 (1998) 607.
Google Scholar
[42]
A.R. Pillaia, R.E. Millera, Res. Soc. Symp. Proc. 653 (2000) Z2. 9. 1.
Google Scholar
[43]
S. Hai, E.B. Tadmor, Acta Mater. 51 (2003) 117-131.
Google Scholar
[44]
D. Rodney, R. Phillips, Phys. Rev. Lett. 82 (1999) 1704-1707.
Google Scholar
[45]
C.S. Shin, M.C. Fivel, D. Rodney, R. Phillips, V.B. Shenoy, L. Dupuy, J. Phys. IV 11 (2001) 19-26.
Google Scholar
[46]
J. Marian, J. Knap, M. Ortiz, Acta Mater. 53 (2005) 2893-2900.
Google Scholar
[47]
J. Marian, J. Knap, G.H. Campbell, Acta Mater. 56 (2008) 2389-2399.
Google Scholar
[48]
E.B. Tadmor, U.V. Waghmare, G.S. Smith, E. Kaxiras, Acta Mater. 50 (2002) 2989-3002.
Google Scholar
[49]
A. Lew, K. Caspersen, E.A. Carter, M. Ortiz, J. Mech. Phys. Solids 54 (2006) 1276-1303.
Google Scholar
[50]
M. Dobson, R. Elliott, M. Luskin, E. Tadmor, J. Comput. Aided Mater. Des. 14 (2007) 219-237.
Google Scholar
[51]
F. Sansoz, V. Dupont, Appl. Phys. Lett. 89 (2006) 111901.
Google Scholar
[52]
R.A. Iglesias, E.P.M. Leiva, Acta Mater. 54 (2006) 2655-2664.
Google Scholar
[53]
V. Dupont, F. Sansoz, Acta Mater. 56 (2008) 6013-6026.
Google Scholar
[54]
J.F. Mei, J.W. Li, Y.S. Ni, H.T. Wang, Nanoscale Res. Lett. 5 (2010) 692-700.
Google Scholar
[55]
F. Sansoz, V. Dupont, Deformation of nanocrystalline metals under nanoscale contact, in: (Eds), Matthew Laudon. Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show, Volume 1, Taylor and Francis, Boston, (2006).
Google Scholar
[56]
P. Chen, Y. Shen, Int. J. Solids Struct. 45 (2008) 6001-6017.
Google Scholar
[57]
K. Mylvaganam, L.C. Zhang, Scripta Mater. 65 (2011) 214-216.
Google Scholar
[58]
W.C.D. Cheong, L.C. Zhang, Int. J. Materials and Product Tech. 18 (2003) 398-407.
Google Scholar
[59]
R. Komanduri, N. Chandrasekaran, L.M. Raff, Wear 242 (2000) 60-88.
Google Scholar
[60]
Y. Gao, C. Lu, N.N. Huynh, G. Michal, H.T. Zhu, A.K. Tieu, Wear 267 (2009) 1998-(2002).
Google Scholar
[61]
A. Buldum, S. Ciraci, I.P. Batra, Phys. Rev. B 57 (1998) 2468-2476.
Google Scholar
[62]
C. Lu, Y. Gao, G.Y. Deng, G. Michal, N.N. Huynh, X.H. Liu, A.K. Tieu, Wear 267 (2009) 1961-(1966).
DOI: 10.1016/j.wear.2009.05.006
Google Scholar
[63]
M.H. Cho, S.J. Kim, D.S. Lim, H. Jang, Wear 259 (2005) 1392-1399.
Google Scholar
[64]
S. Prudhomme, P.T. Bauman, J.T. Oden, Int. J. MultiscaleComput. Eng. 4 (2006) 647-662.
Google Scholar
[65]
W.A. Curtin, R.E. Miller, Modelling. Simul. Mater. Sci. Eng. 11 (2003) R33-R68.
Google Scholar
[66]
M.S. Daw, M.I. Baskes, Phys. Rev. B 29 (1984) 6443–6453.
Google Scholar
[67]
A.F. Voter, S.P. Chen, MRS Proc. 82 (1986) 175-180.
Google Scholar
[68]
S.P. Chen, A.F. Voter, Surf. Sci. 244 (1991) L107-L112.
Google Scholar
[69]
J.P. Hirth, J. Lothe, Theory of Dislocations, second ed., Wiley, New York, (1982).
Google Scholar
[70]
N.W. Ashcroft, N.D. Mermin, Solid State Physics, Brooks Cole, New York, (1976).
Google Scholar
[71]
G. Simmons, H. Wang, Single Crystal Elastic Constants and Caulculated Aggregate Properties: A Handbook, MIT Press, Cambridge, Massachusetts, (1971).
Google Scholar
[72]
R.L. Hayes, M. Fago, M. Ortiz, E.A. Carter, Multiscale Model. Simul. 4 (2005) 359-389.
Google Scholar
[73]
W. Jiang, J. Li, J. Su, J. Tang, Acta Mech. Solida Sin. 28 (2007) 375-379.
Google Scholar