Quasicontinuum Analysis of Dislocation Propagation during Nanocontact

Article Preview

Abstract:

Multiscale simulations using the quasicontinuum (QC) method with the embedded-atom method (EAM) potential are performed to investigate the process of nanocontact including sliding and subsequent withdrawal between Ni tip and Au substrate. The multiscale model reveals that deformation twinning in Au substrate is induced not only by the sheer stress but also by the adhesive stress. Combining with the generalized planar fault energy (GPF) curve of Au, the underlying formation mechanism of deformation twinning is studied in detail. During the withdrawal process, the dislocation degeneration and the vacancy evolution are observed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

470-478

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.L. Johnson, Contact Mechanics, Cambridge University Press, (1985).

Google Scholar

[2] J.A. Hurtado, K. Kim, P. Roy. Soc. Lond. A 455 (1999) 3363-3400.

Google Scholar

[3] B. Bhushan, J.N. Israelachvili, U. Landman, Nature 374 (1995) 607-616.

Google Scholar

[4] H. Spikes, Tribol. Int. 34 (2001) 789-799.

Google Scholar

[5] B. Bhushan, Wear 259 (2005) 1507-1531.

Google Scholar

[6] R. Maboudian, MRS BULL. 23 (1998) 47-51.

Google Scholar

[7] B. Bhushan, Micro/Nanotribology and its Applications, Kluwer Academic Publishers, Dordrecht, Netherlands, (1997).

Google Scholar

[8] H. Liu, B. Bhushan, J. Vac. Sci. Technol. A 21 (2003) 1528-1538.

Google Scholar

[9] B. Bhushan, Tribol. Int. 28 (1995) 85-96.

Google Scholar

[10] M. Roya, C. Carlo, J. Adhesion Sci. Technol. 17 (2003) 583-591.

Google Scholar

[11] U. Beerschwinger, T. Albrecht, D. Mathieson, R.L. Reuben, S.J. Yang, M. Taghizadeh, Wear 181-183 (1995) 426-435.

Google Scholar

[12] A.M. Homola, J.N. Israelachvili, P.M. McGuiggan, M.L. Gee, Wear 136 (1990) 65-83.

Google Scholar

[13] L. Zhang, I. Zarudi, Int. J. Mech. Sci. 43 (2001) 1985-(1996).

Google Scholar

[14] M. Hirano, K. Shinjo, R. Kaneko, Y. Murata, Phys. Rev. Lett. 78 (1997) 1448-1451.

Google Scholar

[15] M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, J.A. Heimberg, H.W. Zandbergen, Phys. Rev. Lett. 92 (2004) 126101.

DOI: 10.1103/physrevlett.92.126101

Google Scholar

[16] A. Socoliuc, E. Gnecco, S. Maier, O. Pfeiffer, A. Baratoff, R. Bennewitz, E. Meyer, Science 313 (2006) 207-210.

DOI: 10.1126/science.1125874

Google Scholar

[17] U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Science 248 (1990) 454-461.

Google Scholar

[18] U. Landman, W.D. Luedtke, J. Vac. Sci. Technol. B 9 (1991) 414-423.

Google Scholar

[19] J. Song, D.J. Srolovitz, J. Appl. Phys. 104 (2008) 124312 - 124312-11.

Google Scholar

[20] J. Song, D.J. Srolovitz, Acta Mater. 54 (2006) 5305-5312.

Google Scholar

[21] D. Mulliah, S.D. Kenny, R. Smith, C.F. Sanz-Navarro, Nanotechnology 15 (2004) 243-249.

Google Scholar

[22] J. Belak, I.F. Stowers, The indentation and scraping of a metal surface: A Molecular Dynamics study, in: I.L. Singer, H.M. Pollock (Eds), Fundamentals of Friction: Macroscopic and Microscopic Processes, Kluwer Academic Publisher, Dordrecht, (1992).

DOI: 10.1007/978-94-011-2811-7_25

Google Scholar

[23] L. Zhang, H. Tanaka, Wear 211 (1997) 44-53.

Google Scholar

[24] L. Zhang, H. Tanaka, Tribol. Int. 31 (1998) 425-433.

Google Scholar

[25] P. Heino, H. Häkkinen, K. Kaski, Europhys. Lett. 41 (1998) 273-278.

Google Scholar

[26] W.K. Liu, E.G. Karpov, S. Zhang, H.S. Park, Comput. Methods Appl. Mech. Engrg. 193 (2004) 1529-1578.

Google Scholar

[27] E.B. Tadmor, M. Ortiz, R. Phillips, Philos. Mag. A 73 (1996) 1529-1563.

Google Scholar

[28] E.B. Tadmor, R. Phillips, M. Ortiz, Langmuir 12 (1996) 4529–4534.

Google Scholar

[29] V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Phys. Rev. Lett. 80 (1998) 742-745.

Google Scholar

[30] V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, M. Ortiz, J. Mech. Phys. Sol. 47 (1999) 611-642.

Google Scholar

[31] R.E. Miller, E.B. Tadmor, J. Comput. Aided Mater. Des. 9 (2002) 203-239.

Google Scholar

[32] S. P. Xiao, W. X. Yang, Int. J. Comput. Methods 2 (2004) 293-313.

Google Scholar

[33] S. P. Xiao, W. X. Yang, Comput. Mater. Sci. 37 (2006) 374-379.

Google Scholar

[34] S. P. Xiao, W. X. Yang, Int. J. Numer. Meth. Eng. 69 (2007) 2099-2125.

Google Scholar

[35] W. X. Yang, S. P. Xiao, Comput. Mater. Sci. 41 (2008) 431-439.

Google Scholar

[36] R. Phillips, D. Rodney, V. Shenoy, E. Tadmor, M. Ortiz, Modeling Simul. Mater. Sci. Eng. 7 (1999) 769.

Google Scholar

[37] E.B. Tadmor, R. Miller, R. Phillips, M. Ortiz, J. Mater. Res. 14 (1999) 2233-2250.

Google Scholar

[38] J. Jin, S.A. Shevlin, Z.X. Guo, Acta Mater. 56 (2008) 4358-4368.

Google Scholar

[39] J.W. Li, Y.S. Ni, Y.H. Lin, C. Luo, W.G. Jiang, Acta Metall. Sin. (in Chinese) 45 (2009) 129-136.

Google Scholar

[40] J. Li, Y. Ni, H. Wang, J. Mei, Nanoscale Res. Lett. 5 (2010).

Google Scholar

[41] R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Modeling Simul. Mater. Sci. Eng. 6 (1998) 607.

Google Scholar

[42] A.R. Pillaia, R.E. Millera, Res. Soc. Symp. Proc. 653 (2000) Z2. 9. 1.

Google Scholar

[43] S. Hai, E.B. Tadmor, Acta Mater. 51 (2003) 117-131.

Google Scholar

[44] D. Rodney, R. Phillips, Phys. Rev. Lett. 82 (1999) 1704-1707.

Google Scholar

[45] C.S. Shin, M.C. Fivel, D. Rodney, R. Phillips, V.B. Shenoy, L. Dupuy, J. Phys. IV 11 (2001) 19-26.

Google Scholar

[46] J. Marian, J. Knap, M. Ortiz, Acta Mater. 53 (2005) 2893-2900.

Google Scholar

[47] J. Marian, J. Knap, G.H. Campbell, Acta Mater. 56 (2008) 2389-2399.

Google Scholar

[48] E.B. Tadmor, U.V. Waghmare, G.S. Smith, E. Kaxiras, Acta Mater. 50 (2002) 2989-3002.

Google Scholar

[49] A. Lew, K. Caspersen, E.A. Carter, M. Ortiz, J. Mech. Phys. Solids 54 (2006) 1276-1303.

Google Scholar

[50] M. Dobson, R. Elliott, M. Luskin, E. Tadmor, J. Comput. Aided Mater. Des. 14 (2007) 219-237.

Google Scholar

[51] F. Sansoz, V. Dupont, Appl. Phys. Lett. 89 (2006) 111901.

Google Scholar

[52] R.A. Iglesias, E.P.M. Leiva, Acta Mater. 54 (2006) 2655-2664.

Google Scholar

[53] V. Dupont, F. Sansoz, Acta Mater. 56 (2008) 6013-6026.

Google Scholar

[54] J.F. Mei, J.W. Li, Y.S. Ni, H.T. Wang, Nanoscale Res. Lett. 5 (2010) 692-700.

Google Scholar

[55] F. Sansoz, V. Dupont, Deformation of nanocrystalline metals under nanoscale contact, in: (Eds), Matthew Laudon. Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show, Volume 1, Taylor and Francis, Boston, (2006).

Google Scholar

[56] P. Chen, Y. Shen, Int. J. Solids Struct. 45 (2008) 6001-6017.

Google Scholar

[57] K. Mylvaganam, L.C. Zhang, Scripta Mater. 65 (2011) 214-216.

Google Scholar

[58] W.C.D. Cheong, L.C. Zhang, Int. J. Materials and Product Tech. 18 (2003) 398-407.

Google Scholar

[59] R. Komanduri, N. Chandrasekaran, L.M. Raff, Wear 242 (2000) 60-88.

Google Scholar

[60] Y. Gao, C. Lu, N.N. Huynh, G. Michal, H.T. Zhu, A.K. Tieu, Wear 267 (2009) 1998-(2002).

Google Scholar

[61] A. Buldum, S. Ciraci, I.P. Batra, Phys. Rev. B 57 (1998) 2468-2476.

Google Scholar

[62] C. Lu, Y. Gao, G.Y. Deng, G. Michal, N.N. Huynh, X.H. Liu, A.K. Tieu, Wear 267 (2009) 1961-(1966).

DOI: 10.1016/j.wear.2009.05.006

Google Scholar

[63] M.H. Cho, S.J. Kim, D.S. Lim, H. Jang, Wear 259 (2005) 1392-1399.

Google Scholar

[64] S. Prudhomme, P.T. Bauman, J.T. Oden, Int. J. MultiscaleComput. Eng. 4 (2006) 647-662.

Google Scholar

[65] W.A. Curtin, R.E. Miller, Modelling. Simul. Mater. Sci. Eng. 11 (2003) R33-R68.

Google Scholar

[66] M.S. Daw, M.I. Baskes, Phys. Rev. B 29 (1984) 6443–6453.

Google Scholar

[67] A.F. Voter, S.P. Chen, MRS Proc. 82 (1986) 175-180.

Google Scholar

[68] S.P. Chen, A.F. Voter, Surf. Sci. 244 (1991) L107-L112.

Google Scholar

[69] J.P. Hirth, J. Lothe, Theory of Dislocations, second ed., Wiley, New York, (1982).

Google Scholar

[70] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Brooks Cole, New York, (1976).

Google Scholar

[71] G. Simmons, H. Wang, Single Crystal Elastic Constants and Caulculated Aggregate Properties: A Handbook, MIT Press, Cambridge, Massachusetts, (1971).

Google Scholar

[72] R.L. Hayes, M. Fago, M. Ortiz, E.A. Carter, Multiscale Model. Simul. 4 (2005) 359-389.

Google Scholar

[73] W. Jiang, J. Li, J. Su, J. Tang, Acta Mech. Solida Sin. 28 (2007) 375-379.

Google Scholar