[1]
F.L. Zhou, R.H. Gong, Review manufacturing technologies of polymeric nanofibers and nanofiber yarns, Polym. Int. 57 (2008) 837-845.
DOI: 10.1002/pi.2395
Google Scholar
[2]
Y.Z. Long, M.M. Li, C.Z. Gu, M.X. Wan, J.L. Duvail, Z.W. Liu and Z.Y. Fan, Recent advances in synthesis physical properties and applications of conducting polymer nanotubes and nanofibers, Prog. Polym. Sci. 36 (2011) 1415-1442.
DOI: 10.1016/j.progpolymsci.2011.04.001
Google Scholar
[3]
J.E. An, G. W. Jeon and Y. G. Jeong, Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene, Fiber. Polym. 13 (2012) 507-514.
DOI: 10.1007/s12221-012-0507-z
Google Scholar
[4]
S. Lee, Y. J. Kim, D. H. Kim, B. C. Ku and H. I. Joh, Synthesis and properties of thermally reduced graphene oxide/polyacrylonitrile composites, J. Phys. Chem. Solids. 73 (2012) 741-743.
DOI: 10.1016/j.jpcs.2012.01.015
Google Scholar
[5]
L. Yin, J. Wang, F. Lin, J. Yang and Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries, Energy Environ. Sci. 5 (2012) 6966-6972.
DOI: 10.1039/c2ee03495f
Google Scholar
[6]
B. Sun, Y.Z. Long, H.D. Zhang, M.M. Li, J.L. Duvail, X.Y. Jiang and H.L. Yin, Advances in three-dimensional nanofibrous macrostructures via electrospinning, Prog. Polym. Sci. (2013) in press.
DOI: 10.1016/j.progpolymsci.2013.06.002
Google Scholar
[7]
M. B. Bazbous, G. K. Stylios, Novel mechanism for spinning continuous twisted composite nanofiber yarns, Eur. Polym. J. 44 (2008) 1-12.
DOI: 10.1016/j.eurpolymj.2007.10.006
Google Scholar
[8]
W.E. Teo, R. Gopal, R. Ramaseshan, K. Fujihara and S. Ramakrishna, A dynamic liquid support system for continuous electrospun yarn fabrication, Polymer 48 (2007) 3400-3405.
DOI: 10.1016/j.polymer.2007.04.044
Google Scholar
[9]
S.F. Fennessey, R.J. Farris, Fabrication of aligned and molecularly electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns, Polymer, 45 (2004) 4217-4225.
DOI: 10.1016/j.polymer.2004.04.001
Google Scholar
[10]
C.K. Liu, R.J. Sun, K. Lai, C.Q. Sun and Y.W. Wang, Preparation of short submicron-fiber yarn by an annular collector through electrospinning, Mater. Lett. 62 (2008) 4467-4469.
DOI: 10.1016/j.matlet.2008.07.058
Google Scholar
[11]
S.C. Moon, R.J. Farris, Strong electrospun nanometer-diameter polyacrylonitrile carbon fiber yarns, Carbon, 47 (2009) 2829-2839.
DOI: 10.1016/j.carbon.2009.06.027
Google Scholar
[12]
X. Wang, K. Zhang, M. Zhu, B. S. Hsiao and B. Chu, Enhanced mechanical performance of self-bundled electrospun fiber yarns via post-treatments, Macromol. Rapid Commun. 29 (2008) 826-832.
DOI: 10.1002/marc.200700873
Google Scholar
[13]
D. Paneva, N. Manolova, I. Rashkov, H. Penchev, M. Mimhai and E. S. Dragan, self-organization of fibers into yarns during electrospinning of polycation/polyanion polyelectrolyte pairs, Dig. J. Nanomater. Bios. 5 (2010) 811-819.
Google Scholar
[14]
F. T. Peirce, The weakest link. Theorems on the strength of long and of composite specimens, J. Textile Inst. 17 (1926) T355/T368.
DOI: 10.1080/19447027.1926.10599953
Google Scholar