Influence of Complexing Agent on the Structure and Properties of Electrodeposited Fe–Co Alloy Nanowires

Article Preview

Abstract:

Ordered magnetic FexCo1-x alloy nanowires were synthesized in a porous alumina template by electrodeposition. The structural and magnetic properties of the as-deposited nanowires were investigated by SEM, TEM, XRD, EDS and VSM, respectively. The influence of the complexing agent on the stoichiometric properties is discussed, and the results indicate that the modulation of buffer and complexing agent has great influence on the electrodeposition process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

499-502

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fert, L. Piraux, J. Magn. Magn. Mater. 200 (1999) 338-358.

Google Scholar

[2] P. S. Fodor, G. M. Tsoi and L. E. Wenger, J. Appl. Phys. 103 (2008) 07B711-3.

Google Scholar

[3] S. Shamaila, R. Sharif, S. Riaz, M. Ma, M. Khaleeq-ur-Rahman, and X.F. Han, J. Magn. Magn. Mater. 320 (2008) 1803-1809.

DOI: 10.1016/j.jmmm.2008.02.183

Google Scholar

[4] G.T.A. Huysmans, J.C. Lodder, and J. Wakui, J. Appl. Phys. 64 (1988) 2016- (2021).

Google Scholar

[5] J. M. Garcia, A. Asenjo, J. Velazquez, D. Garcia, M. Vazquez, P. Aranda and E. Ruiz-Hitzky, J. Appl. Phys. 85 (1999) 5480-5482.

Google Scholar

[6] W. Wernsdorfer, K. Hasselbach, A. Benoit, B. Barbara, B. Doudin, J. Meier, J. Ph. Ansermet, and D. Mailly, Phys. Rev. B 55 (1997) 11552-11559.

DOI: 10.1103/physrevb.55.11552

Google Scholar

[7] M. E. Schabes, J. Magn. Magn. Mater. 95 (1991) 249-288.

Google Scholar

[8] A. Saedi, M. Ghorbani, Mater. Chem. Phys. 91 (2005) 417-423.

Google Scholar

[9] Y. Li, G. W. Meng and L. D. Zhang, Appl. Phys. Lett. 76 (2000) 15-17.

Google Scholar

[10] H. N. Hu, H. Y. Chen, S. Y. Yu, J. L. Chen, G. H. Wu, F. B. Meng, J. P. Qu, Y. X. Li, and H. Zhu, J. Magn. Magn. Mater. 295 (2005) 257-262.

Google Scholar

[11] S. Aravamudhan, J. Singleton, P. A. Goddard and S. Bhansali, J. Phys. D: Appl. Phys. 42 (2009) 115008-115017.

Google Scholar

[12] E. Guaus, J. Torrent-Burgués, J. Electroanal. Chem. 549 (2003) 25-36.

Google Scholar

[13] V. Scarani, B. Doundin, J. Philippe, J. Magn. Magn. Mater. 205 (1999) 241-248.

Google Scholar

[14] J. P. Pierce, E. W. Plummer and J. Shen, Appl. Phys. Lett. 81 (2002) 1890-1892.

Google Scholar

[15] P. S. Fodor, G. M. Tsoi and L. E. Wenger, J. Appl. Phys. 93 (2003) 7035-7037.

Google Scholar

[16] D. H. Qin, Y. Peng, L. Cao, and H. L. Li, Chem. Phys. Lett. 374 (2003) 661-666.

Google Scholar

[17] D. H. Qin, L. Cao, Q. Y. Sun, Y. Huang, H. L. Li, Chem. Phys. Lett. 358 (2002) 484-488.

Google Scholar

[18] T. R. Gao, L. F. Yin, C. S. Tian, M. Lu, H. Sang, and S. M. Zhou, J. Magn. Magn. Mater. 300 (2006) 471-478.

Google Scholar

[19] S. Thongmee, H. L. Pang, J. B. Yi, J. Ding, J. Y. Lin, and L. H. Van, Acta Mate. 57 (2009) 2482-2487.

DOI: 10.1016/j.actamat.2009.02.006

Google Scholar