The Modification of Anatase TiO2 (001) Surface by N or S Atom: A DFT Investigation

Article Preview

Abstract:

The electronic of S-doped and N-doped anatase TiO2(001) surfaces were investigated using the density functional theory (DFT). Substitutional and interstitial configurations of N and S atoms doped in anatase TiO2 (001) surface and sub-surface at different sites were considered and all the formation energies were obtained. The perfect strutures of atoms doping were obstained by formation energies comparisions. The electronic structures of the results indicated that the elemental doping has much more efficient and stable photocatalyst than the pristine one, which narrowed the band gap of TiO2 and improved its visible-light response activity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

588-592

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Tang, Z. Zou, J. Ye: Catal Lett 92 (2004) 53.

Google Scholar

[2] X. Xiang, D. Chang, Y. Jiang, C.M. Liu, X.T. Zu: Can. J. Phys. 90 (2012), 39.

Google Scholar

[3] B. Chi, L. Zhao, T. Jin: J. Phys. Chem. C 111 (2007) 6189.

Google Scholar

[4] S.X. Zhang, S.Y. Wu, P. Xu, L.L. Liu: Can. J. Phys. 88(1) (2010), 49.

Google Scholar

[5] L.C. Jia, C.C. Wu, Y.Y. Li et. al: Appl. Phys. Lett. 98 (2011) 211903.

Google Scholar

[6] Z.B. Li,X. Wang, L.C. Jia: Can. J. Phys. 92(1) ( 2014), 71.

Google Scholar

[7] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Science 293 (2001), 269.

Google Scholar

[8] Y. Gai, J. Li, S. -S. Li, J. -B. Xia, and S. -H. Wei: Phys. Rev. Lett. 102 (2009), 036402.

Google Scholar

[9] P. Wang, Z. Liu, F. Lin, G. Zhou, J. Wu, W. Duan, B. -L. Gu, and S. B. Zhang: Phys. Rev. B 82 (2010) , 193103.

Google Scholar

[10] Z.B. Li,X. Wang: Advanced Materials Research. 746, (2013) 400.

Google Scholar

[11] J. B. Varley, A. Janotti, and C. G. Van de Walle: Adv. Mater. 23 (2011), 2343.

Google Scholar

[12] D.W. Jing, Y.J. Zhang, L.J. Guo: Chem. Phys. Lett. 415 (2005) 74.

Google Scholar

[13] W. Mu, J.M. Herrmann, P. Pichat: Catal. Lett. 3 (1989) 73.

Google Scholar

[14] J. A. Rengifo-Herrera and C. Pulgarin: Sol. Energy 84 (2010), 37.

Google Scholar

[15] J. A. Rengifo-Herrera, K. Pierzchała, A. Sienkiewicz, L. Forro, J. Kiwi, J. E. Moser, and C. Pulgarin: J. Phys. Chem. C 114 (2010), 2717.

Google Scholar

[16] J. H. Xu, J. X. Li, W. L. Dai, Y. Cao, H. Li, and K. N. Fan: Appl. Catal. B 79(2008), 72.

Google Scholar

[17] Y. W. Sakai, K. Obata, K. Hashimoto, and H. Irie: Vacuum 83 (2008), 683.

Google Scholar

[18] R. Asahi, T. Morikawa, T. Ohwakl, K. Aoki, Y. Taga: Science 293 (2001) 367.

Google Scholar

[19] J.H. Lee, D.F. Hevia, A. Selloni: Phys. Rev. Lett. 110 (2013) 016101.

Google Scholar

[20] Z.B. Li, X. Wang, L.C. Jia, B. Chi: J. Mol. Str 1061(2014), 160.

Google Scholar

[21] Y. F Ma, J.L. Zhang, B.Z. Tian, F. Chen, L.Z. Wang: J. Hazard. Mater 182 (2010), 386.

Google Scholar

[22] X. Q. Gong and A. Selloni: J. Phys. Chem. B 109 (2005), 19560.

Google Scholar

[23] J. P. Perdew, K. Burke, M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[24] G. Kresse, J. Hafner: Phys. Rev. B 47 (1993) 558.

Google Scholar

[25] G. Kresse, D. Joubert: Phys. Rev. B 59(1999, ) 1758.

Google Scholar

[26] R. A. Bennett, P. Stone, N. J. Price, M. Bowker: Phys. Rev. Lett. 82 (1999), 383.

Google Scholar