Influence of Nd-Doping on Electronic Structure and Optical Properties of ZnO

Article Preview

Abstract:

A detailed first-principles study of electronic structure and optical properties of Nd-doping ZnO with various concentrations of Nd was performed using density functional theory. The results show that the band gap of Nd-doping ZnO slightly widens with the increasing Nd concentration, this is because the conduction band undergoes a greater shift toward the lower-energy region than the valence band, which is agreement with experimental results. Furthermore, in comparison to pure-ZnO, the Fermi level shifts into the conduction band after Nd-doping ZnO. And the calculated result of imaginary part of dielectric function of Nd-doping ZnO shows that there is a sharp peak in the lower-energy region, which is due to the electrons transition between d-d orbital of Nd atom.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

658-661

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. Zheng, J. L. Song, Z. Zhao, and et al. Crystal Research and Technology, 47 (2012) 713–718.

Google Scholar

[2] J.T. Chen, J. Wang, F. Zhang, and et al., Journal of Crystal Growth, 310 (2008) 2627-2632.

Google Scholar

[3] O. Yayapao, T. Thongtem, A. Phuruangrat, and et al., Materials Letters, 90 (2013) 83-86.

DOI: 10.1016/j.matlet.2012.09.027

Google Scholar

[4] Liu Y, Luo W, Li R, and Chen X, J. Nanosci. Nanotechnol. 10 (2010) 1871-1876.

Google Scholar

[5] B. Roy, S. Chakrabarty, O. Mondal, and et al., Materials Charactreization, 70 (2012) pp.1-7.

Google Scholar

[6] X.Y. Ma, Z. Wang, Materials Science in Semiconductor Processing, 15 (2012) 227-231.

Google Scholar

[7] J.H. Zheng, J.L. Song, Q. Jiang, J.S. Lian, Applied Surface Science, 258 (2012) 6735-6738.

Google Scholar

[8] M Subramanian, P Thakur, S Gautam, and et al., J. Phys. D: Appl. Phys. 42 (2009) 105410.

Google Scholar

[9] Fenglin Xian, Xiangyin Li, Optics & Laser Technology 45 (2013) 508-512.

Google Scholar

[10] Surender Kumar, P.D. Sahare, Journal of Rare Earths 30 (2012) 761-768.

Google Scholar

[11] G. Kresse, and J. Hafner, Phys. Rev. B 47 (1994) 558.

Google Scholar

[12] G. Kresse, and J. Furthermuller, Phys. Rev. B 54 (1996) 11169.

Google Scholar

[13] F. Decremps, F. Datchi, A.M. Saitta, and et al. Phys. Rev. B 68 (2003) 104101.

Google Scholar

[14] Jian Sun, Hui-Tian Wang, Julong He, and Yongjun Tian, Phys. Rev. B 71 (2005) 125132.

Google Scholar

[15] Anderson Janotti, David Segev, and Chris G. Van de Walle, Phys. Rev. B 74 (2006) 045202.

Google Scholar

[16] J.P. Perdew, and Y. Wang, Phys. Rev. B 33 (1986) 8800.

Google Scholar

[17] J. Sun, H.T. Wang, J.L. He, Y.J. Tian, Phys. Rev. B 71 (2005) 125132.

Google Scholar

[18] M. Xu, H. Zhao, K. Ostrikov, M.Y. Duan, L.X. Xu, J Appl. Phys. 105 (2009) 043708.

Google Scholar