Fabrication and Lead Ion Removal Property of Magnetic Hydroxyapatite Composite with Hierarchically Urchin-like Microstructure

Article Preview

Abstract:

The hierarchically urchin-like magnetic hydroxyapatite (HAp)/Fe3O4 composites were hydrothermally fabricated and were used for the removal of Pb (II) from aqueous solutions. The morphology, composition and properties of the magnetic HAp/Fe3O4 composites were fully characterized and investigated. The results showed that the HAp/Fe3O4 composites had a 3D urchin-like hierarchical structure with Fe3O4 nanoparticles dispersed among the building units. These urchin-like composites had high surface area and good magnetic responsibility. The equilibrium removal process of Pb (II) by the composites was correlated well with the Langmuir model, resulting in the maximum adsorption capacity of 223.71 mg/g. The high adsorption capacity and good magnetic responsibility suggest that the multifunctional composites have great potentials for heavy metal ion removal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

666-671

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. H. Jang, Y. G. Jeong, B. G. Min, W. S. Lyoo, S. C. Lee, J. Hazard. Mater. 159, 294 (2008).

Google Scholar

[2] S. H. Jang, B. G. Min, Y. G. Jeong, W. S. Lyoo, S. C. Lee, J. Hazard. Mater. 152, 1285 (2008).

Google Scholar

[3] L. J. Dong, Z. L. Zhu, Y. L. Qiu, J. F. Zhao, Chem. Eng. J. 165, 827 (2010).

Google Scholar

[4] I. Smiciklas, S. Dimovic, L. Plecas, M. Mitric, Water. Res. 40, 2267 (2006).

Google Scholar

[5] A. Corami, S. Mignardi, V. Ferrini, J. Colloid Interface Sci. 317, 402 (2008).

Google Scholar

[6] S. Elasri, A. Laghzizil, T. Coradin, A. Saoiabi, A. Alaoui, R. Mhamedi, Colloids Surf. A: Physicochem. Eng. Aspects 362, 33 (2010).

Google Scholar

[7] Y. Zhang, Y. Liu, X. B. Ji, C. E. Banks, W. Zhang, Mater. Lett. 78, 120 (2012).

Google Scholar

[8] S. D. Jiang, Q. Z. Yao, G. T. Zhou, S. Q. Fu, J. Phys. Chem. C 116, 4484 (2012).

Google Scholar

[9] X. Y. Zhao, Y. J. Zhu, J. Zhao, B. Q. Lu, F. Chen, C. Qi, J. Wu, J. Colloid Interface Sci. 416, 11 (2014).

Google Scholar

[10] X.Y. Zhao, Y. J. Zhu, F. Chen, B. Q. Lu, J. Wu, CrystEngComm 15, 206 (2013).

Google Scholar

[11] J. Y. Kim. H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 47, 1 (2008).

Google Scholar

[12] J. F. Ren, S. Shen, Z. Q. Pang, X. H. Lu, C. H. Deng, X. G. Jiang, Chem. Commun. 47, 11692 (2011).

Google Scholar

[13] K. L. Lin, L. Chen, P. Y. Liu, Z. Y. Zou, M. L. Zhang, Y. H. Shen, Y. Q. Qiao, X. Y. Liu, J. Chang, CrystEngComm 15, 2999 (2013).

Google Scholar

[14] Y. P. Guo, L. H. Guo, Y. B. Yao, C. Q. Ning, Y. J. Guo, Chem. Commun. 47, 12215 (2011).

Google Scholar

[15] X. X. Wang, Clean-Soil, Air, Water 39, 13 (2011).

Google Scholar

[16] T. Iwasaki, R. Nakatsuka, K. Murase, H. Takata, H. Nakamura, S. Watano, Int. J. Mol. Sci. 14, 9365 (2013).

Google Scholar