The Energy-Efficient Heat Insulation Thickness for Systems of Hinged Ventilated Facades

Article Preview

Abstract:

Calculation of payback periods of the energy saving actions directed on increase of level of thermal protection of external enclosure structures of buildings is given. Economic efficiency of investments in energy saving actions is analyzed and the model allowing to carry out the specified analysis is offered. Recommendations about reduction of payback periods are provided.Article also is devoted definition of optimum, economically well-founded thickness of a insulant in systems of rear ventilated facades. Are resulted thermotechnical and economic calculations. The optimum thickness of the insulant in the given systems is offered.A number of the energy saving actions is necessary for economy of thermal energy, allowing to eliminate defects of protecting designs or to reduce their influence on building heatconsumption. Construction of hinged ventilated facades at simultaneous introduction of automated individual thermal points with automatic equipment dependent on weather [1] can become an example of the engineering decision on increase of heat-shielding properties of protecting walls.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

905-920

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tehniko-ekonomicheskaya otsenka povyisheniya teplozaschityi ograzhdayuschih konstruktsiy v regione. Gryizlov V.S. Vestnik Cherepovetskogo gosudarstvennogo universiteta. 2010. № 3. S. 74-78.

Google Scholar

[2] Gorshkov A.S., Knatko M.V., Efimenko M.N. Energoeffektivnost sovremennyih zdaniy: ot problemyi k resheniyu (chast 1) / Krovelnyie i izolyatsionnyie materialyi, №1(25), 2009. – s. 46-48.

Google Scholar

[3] Kolotilkin B.M. Dolgovechnost zhilyih zdaniy. M.: Izd-vo literaturyi po stroitelstvu, 1965. 254 s.

Google Scholar

[4] GOST 30494-96. Zdaniya zhilyie i obschestvennyie. Parametryi mikroklimata v pomescheniyah. M., (1999).

Google Scholar

[5] Rukovodstvo po raschetu teplopotrebleniya ekspluatiruemyih zhilyih zdaniy / Rukovodstvo AVOK-8-2007. M.: «Avok-Press» – 2007. – 22 s.

Google Scholar

[6] Uproschennaya model minimizatsii rashoda summarnoy energii, iduschey na stroitelstvo i ekspluatatsiyu zdaniy. Savin V.K. Academia. Arhitektura i stroitelstvo. 2010. № 1. S. 80-84.

Google Scholar

[7] Gorshkov A.S. Energoeffektivnost v stroitelstve: voprosyi normirovaniya i meryi po snizheniyu energopotrebleniya zdaniy. / Inzhenerno-stroitelnyiy zhurnal. 2010. № 1(11). S. 9-13.

Google Scholar

[8] Gorshkov A.S., Gladkih A.A. Meropriyatiya po povyisheniyu energoeffektivnosti v stroitelstve / Academia. Arhitektura i stroitelstvo. 2010. № 3. S. 246-250.

Google Scholar

[9] Gorshkov A.S., Gladkih A.A. Meropriyatiya po povyisheniyu energoeffektivnosti v stroitelstve / Academia. Arhitektura i stroitelstvo. 2010. № 3. S. 246-250.

Google Scholar

[10] Gorshkov A. S. Energoeffektivnost v stroitelstve: voprosyi normirovaniya i meryi po snizheniyu energopotrebleniya zdaniy / Inzhenerno-stroitelnyiy zhurnal. 2010. № 1. S. 9-13.

Google Scholar

[11] Petrichenko, M.R. Nonsteady filtration in a uniform soil mass / Power Technology and Engineering. 2012. №46 (3). S. 198-200.

DOI: 10.1007/s10749-012-0331-z

Google Scholar

[12] Bukhartsev, V.N., Petrichenko, M.R. Nonsteady filtration in a uniform soil mass / Power Technology and Engineering. 2012. №46 (3). S. 1-3.

DOI: 10.1007/s10749-012-0331-z

Google Scholar

[14] Bukhartsev, V.N., Petrichenko, M.R. Problem of filtration in a uniform rectangular soil mass is solved by variational principles / Power Technology and Engineering. 2012. №46 (3). S. 185-189.

DOI: 10.1007/s10749-012-0329-6

Google Scholar

[15] Bukhartsev, V.N., Petrichenko, M.R. Problem of filtration in a uniform rectangular soil mass is solved by variational principles / Power Technology and Engineering. 2012. №46 (3). S. 1-5.

DOI: 10.1007/s10749-012-0329-6

Google Scholar

[16] Bukhartsev, V.N., Petrichenko, M.R. Approximation of the depression curve of the inflow to an ideal trench / Power Technology and Engineering. 2011. №44 (5). S. 374-377.

DOI: 10.1007/s10749-011-0193-9

Google Scholar

[17] Bukhartsev, V.N., Petrichenko, M.R. Approximation of the depression curve of the inflow to an ideal trench / Power Technology and Engineering. 2011. №44 (5). S. 1-4.

DOI: 10.1007/s10749-011-0193-9

Google Scholar

[18] Bukhartsev, V.N., Petrichenko, M.R. Approximation of the depression curve of the inflow to an ideal trench / Power Technology and Engineering. 2011. №44 (5). S. 1-4.

DOI: 10.1007/s10749-011-0193-9

Google Scholar

[19] Petrichenko, M.R., Khar'kov, N.S. Experimental study of the pumping action of helical flow / Technical Physics. 2009. №54 (7). S. 1063-1065.

DOI: 10.1134/s1063784209070238

Google Scholar

[20] Bukhartsev, V.N., Petrichenko, M.R. Condition of mechanical-energy balance of an integral flow with a variable rate / Power Technology and Engineering. 2001. №35 (4). C. 189-194.

Google Scholar

[21] Bukhartsev, V.N., Petrichenko, M.R. Condition of mechanical-energy balance of an integral flow with a variable rate / Hydrotechnical Construction. 2001. №35 (4). C. 189-194.

DOI: 10.1023/a:1011669518499

Google Scholar

[22] Bukhartsev, V.N., Petrichenko, M.R. Conditions of mechanical-energy balance of an integral flow with a variable rate / Hydrotechnical Construction. 2001. №35 (4). C. 189-194.

DOI: 10.1023/a:1011669518499

Google Scholar

[23] Petrichenko, M.R. Convective heat and mass transfer in combustion chambers of piston engines. Basic results / Heat transfer. Soviet research. 1991. №23 (5). C. 703-715.

Google Scholar

[24] Petrichenko, R.M., Kanishchev, A.B., Zakharov, L.A., Kandakzhi, B. Some principles of combustion of homogeneous fuel-air mixtures in the cylinder of an internal combustion engine / Journal of Engineering Physics. 1990. №59(6). C. 1539-1544.

DOI: 10.1007/bf00870411

Google Scholar

[25] Navesnyie ventiliruemyie fasadyi: obzor osnovnyih problem. Nemova D.V. Inzhenerno-stroitelnyiy zhurnal. 2010. № 5. S. 7-11.

Google Scholar

[26] SNiP 23-02-2003. Teplovaya zaschita zdaniy. M., (2004).

Google Scholar

[27] Ovcharenko E.G. Teploizolyatsionnyie materialyi i konstruktsii: Uchebnik dlya srednih professionalno-tehnicheskih uchebnyih zavedeniy. M.: INFRA-M, 2003. – 268 s.

Google Scholar

[28] O kompleksnom pokazatele teplovoy zaschityi obolochki zdaniya. Gagarin V.G., Kozlov V.V. AVOK: ventilyatsiya, otoplenie, konditsionirovanie vozduha, teplosnabzhenie i stroitelnaya teplofizika. 2010. № 4. S. 52-61.

Google Scholar

[29] Sapegina E.A. Energoeffektivnost sistemyi navesnogo fasada s vozdushnyim ventiliruemyim zazorom. Diss. na soiskanie kvalifikatsii magistr tehniki i tehnologi po napravleniyu stroitelstvo. SPbGPU, 2009. – 67s.

Google Scholar

[30] Energy Efficiency. D. Eastop, D.R. Croft. Longman. 1990. 400 p.

Google Scholar

[31] Ekonomicheskaya effektivnost energosberegayuschih meropriyatiy. Averyanova O.V. Inzhenerno-stroitelnyiy zhurnal. 2011. № 5. S. 53-59.

Google Scholar

[32] Energoeffektivnost v stroitelstve: voprosyi normirovaniya i meryi po snizheniyu energopotrebleniya zdaniy. Gorshkov A.S. Inzhenerno-stroitelnyiy zhurnal. 2010. № 1. S. 9-13.

Google Scholar

[33] K voprosu o dolgovechnosti i energoeffektivnosti sovremennyih ograzhdayuschih stenovyih konstruktsiy zhilyih, administrativnyih i proizvodstvennyih zdaniy. Knatko M.V., Efimenko M.N., Gorshkov A.S. Inzhenerno-stroitelnyiy zhurnal. 2008. № 2. S. 50-53.

Google Scholar

[34] K voprosu ob energosberezhenii i o povyishenii energeticheskoy effektivnosti v zdaniyah. Goshka L.L. Inzhenerno-stroitelnyiy zhurnal. 2010. № 5. S. 38-42.

Google Scholar

[35] Sistemnyiy podhod k energosberezheniyu v inzhenernyih setyah zdaniy. Goshka L.L. Inzhenerno-stroitelnyiy zhurnal. 2011. № 1. S. 66-71.

Google Scholar

[36] Petrichenko, R.M., Shabanov, A. Yu. Gidrodinamika Maslyanogo Sloya Pod Porshnevymi Kol'tsami Dvigatelei Vnutrennego Sgoraniya. [Hydrodynamics of Oil Film Under Internal Combustion Engine Piston Rings. ] / Trudy LPI. 1985. №411. C. 38-42.

Google Scholar

[37] Vatin, N.I. Weight Vector Of A Conduction Transducer Of A Correlation Flowmeter / Magnetohydrodynamics New York, N.Y. 1985. №21 (3) C. 316-320.

Google Scholar

[38] Bocheninskii, V.P., Vatin, N.I., Shmarov, V.S. Rezul'taty Issledovaniya Perekhodnykh Protsessov V Zhidkometallicheskikh Konturakh S Mgd-Nasosami / (1981).

Google Scholar

[39] Vatin, N.I., Mikhailova, T.N. Computation Of Cross Correlation Function Of Induced Potential For Developed Turbulent Flow With Axisymmetric Mean Velocity Profile / Magnetohydrodynamics New York, N.Y. (1986).

Google Scholar