Effect of Formamide on the Mechanical Properties of Thermoplastic Protein Films

Article Preview

Abstract:

To manufacture the biodegradable protein films available for potential environmentally friendly application, down feather fiber was prepared and modified by formamide which acts as a plasticizer and then hot-pressed into films. The influence of formamdie on the mechanical properties of thermoplastic down films was investigated. The protein films modified by formamide were tough and showed excellent mechanical properties compared to the films without formamide. The down thermoplastic films modified by formamide showed lower weight loss of formamide indicating formamide is a good plasticizer for protein application.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

935-938

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. A. Bullions, D. Hoffman, R. A. Gillespie, J. Price-O'Brien, A. C. Loos, Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites, Compos. Sci. Technol. 66 (2006) 102-144.

DOI: 10.1016/j.compscitech.2005.03.017

Google Scholar

[2] A. L. Martínez-Hernández, C. Velasco-Santos, M. de-Icaza, V. M. Castanño, Dynamical-mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers, Compos. Part B-eng. 38 (2005) 405-410.

DOI: 10.1016/j.compositesb.2006.06.013

Google Scholar

[3] J. R. Barone, W. F. Schmidt, C. F. E. Liebner, Compounding and molding of polyethylene composites reinforced with keratin feather fiber, Compos. Sci. Technol. 65 (2005) 683-692.

DOI: 10.1016/j.compscitech.2004.09.030

Google Scholar

[4] J. R. Barone, W. F. Schmidt, Polyethylene reinforced with keratin fibers obtained from chicken feathers, Compos. Sci. Technol. 65 (2005) 173-181.

DOI: 10.1016/j.compscitech.2004.06.011

Google Scholar

[5] L. Conzatti, F. Giunco, P. Stagnaro, M. Capobianco, M. Castellano, E. Marsano, Polyester-based biocomposites containing wool fibres, Compos. Part A-appls. 43 (2012) 1113-1119.

DOI: 10.1016/j.compositesa.2012.02.019

Google Scholar

[6] X. Liu, S. Gu, W. Xu, Thermal and Structural Characterization of superfine down powder, J. Therm. Anal. Calorim. 111 (2013) 259-266.

DOI: 10.1007/s10973-012-2202-0

Google Scholar

[7] X. Liu, J. Huang, J. Huang, W. Li, W. Xu, Coating superfine down powder on polypropylene for the production of dyeable fibers, Fiber. Polym. 12 (2011) 220-225.

DOI: 10.1007/s12221-011-0220-3

Google Scholar

[8] X. Liu, W. Xu, W. Li, Y. Chen, J. Rao, Mechanical and water vapor transport properties of polyurethane/superfine down powder composites membranes, Polym. Eng. Sci. 50 (2010) 2400-2407.

DOI: 10.1002/pen.21764

Google Scholar

[9] X. Liu, W. Xu, X. Peng, Effects of stearic acid on the interface and performance of polypropylene/superfine down powder composites, Polym. Composite. 30 (2009) 1854-1863.

DOI: 10.1002/pc.20759

Google Scholar

[10] J. R. Barone, W. F. Schmidt, C. F. E. Liebner, Thermally processed keratin films, J. Appl. Polym. Sci. 97 (2005) 1644-1651.

DOI: 10.1002/app.21901

Google Scholar

[11] J. R. Barone, W. F. Schmidt, N. T. Gregoire, Extrusion of feather keratin, J. Appl. Polym. Sci. 100 (2006) 1432-1442.

DOI: 10.1002/app.23501

Google Scholar

[12] C. K. Hong, R. P. Wool, Development of a bio-based composite material from soybean oil and keratin fibers, J. Appl. Polym. Sci. 95 (2005) 1524-1538.

DOI: 10.1002/app.21044

Google Scholar