Extraction of Classification Rules in Databases through Metaheuristic Procedures Based on GRASP

Article Preview

Abstract:

The process of knowledge management in the several areas of society requires constant attention to the multiplicity of decisions to be made about the activities in organizations that constitute them. To make these decisions one should be cautious in relying only on personal knowledge acquired through professional experience, since the whole process based on this method would be slow, expensive and highly subjective. To assist in this management, it is necessary to use mathematical tools that fulfill the purpose of extracting knowledge from database. This article proposes the application of Greedy Randomized Adaptive Search Procedure (GRASP) as Data Mining (DM) tool within the process called Knowledge Discovery in Databases (KDD) for the task of extracting classification rules in databases.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 945-949)

Pages:

3369-3375

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthrusamy: Advances in knowledge Discovery& Data Mining. California: AAAI/MIT, (1996).

Google Scholar

[2] M. Resende and R.M. A SILVA: Meta-Heurísticas em Pesquisa Operacional. (Ed) Omnipax, (2013).

Google Scholar

[3] M.H. Ribeiro: Incorporando Técnicas de Mineração de Dados à Metaheurística GRASP, Niterói, RJ (2005). Master Dissertation, Fluminense Federal University.

Google Scholar

[4] E.R. Fonseca, R. Fuchshuber, L.F. M Santos, A. Plastino and S.L. Martins: Explorando a Metaheurística Hibrida DM-GRASP para o Problema de Multicast Confiável, XL SBPO, João Pessoa, PB, (2008).

Google Scholar

[5] G.S. Semaan and L.S. Ochi: Uma heurística baseada em GRASP para a extração de associações em bases de dados, XIV SPOLM, (2011).

Google Scholar

[6] M.T.A. Steiner, N. Y. Soma, T. Shimizu, J.C. Nievola and P.J. Steiner Neto: Abordagem de um problema médico por meio do processo de KDD com ênfase à análise exploratória dos dados. Rev. Gest Prod., Vol. 13, no. 2 (2006), pp.325-37.

DOI: 10.1590/s0104-530x2006000200013

Google Scholar

[7] A.R. T Góes: Uma metodologia para a criação de Etiqueta de Qualidade no contexto de Descoberta de Conhecimento em Bases de Dados: aplicação nas áreas elétrica e educacional. Curitiba, PR. Doctorate Thesis, Federal University of Paraná State, (2012).

DOI: 10.11606/d.55.2018.tde-28062018-142813

Google Scholar

[8] T. Feo and M. Resende: Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization, Vol. 6, no. 2 (1995), p.109133.

Google Scholar

[9] L. Pitsoulis and M. Resende: Greedy Randomized Adaptive Search Procedures. In: P.M. Pardalos, M.G.C. Resende (Ed. ). Handbook of Applied Optimization. [S. l. ]: Oxford University Press, (2002), pp.168-181.

Google Scholar

[10] M. Resende and C. Ribeiro: Greedy Randomized Adaptive Search Procedures. In: F. Glover, G. Kochenberger. (Ed. ). Handbook of Metaheuristics. [S. l. ]: Kluwer Academic Publishers, (2002). pp.219-249.

DOI: 10.1007/0-306-48056-5_8

Google Scholar

[11] Information on http: /archive. ics. uci. edu/ml/datasets.

Google Scholar

[12] H. Lu, R. Setiono and H. Liu: Effective Data Mining Using Neural Networks. IEE Transactions on Knowledge and Data Engineering, Vol. 8, no. 6 (1996), pp.957-961.

DOI: 10.1109/69.553163

Google Scholar

[13] B. Baesens, R. Setiono, C. Mues and J. Vanthienen: Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evalution. Management Science, Vol. 49, no. 3 (2003), pp.312-329.

DOI: 10.1287/mnsc.49.3.312.12739

Google Scholar

[14] P. Tan, M. Steinbach and V. Kumar: Introdução ao Data Mining – Mineração de Dados. Rio de Janeiro: Ciência Moderna Editor, (2009).

Google Scholar

[15] S. M. Weiss and C.A. Kulikowski: Computer Systems that Learn - Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems, San Francisco: Morgan Kaufmann, (1991).

Google Scholar