Numerical Simulation of the Centrifugal Separator for Oil-Water Emulsion

Article Preview

Abstract:

Calculation of a centrifugal water oil separator is shown. The separator represents alternative method of purifying water of oil inclusions and sludge (at a concentration up to 12%). The problems of creating a computational mesh, defining boundary conditions, separation two phases of oil-water emulsion and efficiency of separation are considered.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 945-949)

Pages:

944-950

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.J. Hirasaki, C.A. Miller, O.G. Raney, D.T. Nguyen. J. Hera, M.K. Poindexter: Separation of produced emulsions from surfactant enhanced oil recovery processes. 2011. Energy and fuels. Vol. 25. No. 2. pp.555-561.

DOI: 10.1021/ef101087u

Google Scholar

[2] A. Silset, A. Hannisdal, P.V. Hemmingsen, J. Sjöblom: Emulsions of heavy crude oils. II. viscous responses and their influence on emulsion stability measurements. 2010. Journal of dispersion science and technology. Vol. 31. No. 10. pp.1432-1445.

DOI: 10.1080/01932690903210341

Google Scholar

[3] Spalart P.R., Shur, M.L.: On the sensitization of turbulence models to rotational and curvature. 1997. Aerospace Science and Technology. Vol. 1, No. 5. pp.297-302.

DOI: 10.1016/s1270-9638(97)90051-1

Google Scholar

[4] A.I. Khrabriy, D.K. Zaicev, E.M. Smirnov: Numerical modeling of flow with free surface based on the method VOF. 2013. Works of CRI acad. A.N. Krylov. No. 78 (362). pp.53-64.

Google Scholar

[5] C.W. Hirt, B. D Nichols: Volume of fluid (VOF). Method for the dynamics of free boundaries. 1981. Journal of Computational Physics.  Vol. 39. pp.201-226.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[6] R. Wemmenhove: Numerical simulation of two-phase flow in offshore environments: PhD thesis. 2008. University of Groningen, pp.121-125.

Google Scholar

[7] A.A. Khalatov: Theory and practice of swirling flows. 1989. AS USSR. Institute of Engineering Thermophysics. - Kiev: Science. Dumka - 192 p. - ISBN 5-12-000927-1.

Google Scholar

[8] A.A. Girgidov, K.I. Streletc, N.I. Vatin: Numerical simulation of three-dimensional velocity field in the cyclone. 2011. Magazine of Civil Engineering. No. 5 (23). pp.5-9.

DOI: 10.5862/mce.23.5

Google Scholar

[9] N.I. Vatin, T.N. Mikhailova: Computation of cross correlation function of induced potential for developed turbulent flow with axisymmetric mean velocity profile. 1986. Magnetohydrodynamics New York, N.Y., 22 (4), pp.385-390.

Google Scholar

[10] N.I. Vatin: Weight vector of conduction transducer of a correlation flowmeter. 1985. Magnetohydrodynamics New York, N.Y., 21 (3), pp.316-320.

Google Scholar

[11] V.P. Bocheninskii, N.I. Vatin, V.S. Shmarov: Results of investigation of transient processes in liquid metal loops with MHD Pumps. 1981. Trudy LPI (374), pp.20-23.

Google Scholar

[12] V.N. Bukhartsev, M.R. Petrichenko: Conditions of mechanical-energy balance of an integral flow with a variable rate. 2001. Hydrotechnical Construction  35  (4)  pp.189-194.

DOI: 10.1023/a:1011669518499

Google Scholar

[13] D.V. Platonov, A.V. Minakov, A.A. Dekterev, A.V. Sentyabov: Numerical modeling of spatio flows with flow swirling. 2013. Computer studies and modeling. Vol. 5. No. 4. pp.635-648.

DOI: 10.20537/2076-7633-2013-5-4-635-648

Google Scholar

[14] M.O. Gagne: Turbulence modeling of swirling flow in a sudden expansion geometry. 1997. Degree: M.A. Sc. Technical University of Nova Scotia (Canada).

Google Scholar

[15] A.V. Shvab, A.G. Chepel: Modeling of swirling turbulent flow in a separator with biconical plates. 2010. Journal of engineering physics and thermophysics. Vol. 83. No. 2. pp.338-345.

DOI: 10.1007/s10891-010-0350-2

Google Scholar

[16] S. Jakirlic, K Hanjalic, C. Tropea: Modeling rotating and swirling turbulent flows: a perpetual challenge. 2002. AIAA Journal. Vol. 40. No. 10. p.1984-(1996).

DOI: 10.2514/2.1560

Google Scholar

[17] R. Thundil Karuppa Raj, V. Ganesan: Study on the effect of various parameters on flow development behind vane swirlers. 2008. International journal of thermal sciences. Vol. 47. No. 9. pp.1204-1225.

DOI: 10.1016/j.ijthermalsci.2007.10.019

Google Scholar

[18] J. Vondal, J. Hajek: Swirling flow prediction in model combuster with axial guide vane swirler. 2012. Chemical engineering transactions. Vol. 29. pp.1069-1074.

Google Scholar

[19] N. Pourmahmoud, A. Hassanzaden, S.E. Rafiee, M. Rahim: Three-dimentional numerical investigation of effect of convergent nozzles on the energy separation in a vortex tube. 2012. Heat and technology. Vol. 30. No. 2. pp.133-140.

DOI: 10.18280/ijht.300219

Google Scholar

[20] M. -Z.P. Ismadi, P. Meunier, A. Fouras, K. Hourigan: Experimental control of vortex breakdown by density effects. 2011. Physics of fluids. Vol. 23. No. 3. pp.034104-9.

DOI: 10.1063/1.3560386

Google Scholar

[21] I.A. Belov, S.A. Isaev: Modeling of turbulent flows, SPb, BGTU, 2001, 108 p.

Google Scholar

[22] A.K. Panov, R.R. Usmanova, V.G. Zaikov, G.E. Zaikov: Complex aerohydrodynamic research and the effectiveness or arresting dispersed particles for barbotage-rotation. 2007 Journal of Applied Polymer Science 104 (4), p.2088-(2091).

DOI: 10.1002/app.25318

Google Scholar

[23] Y. Liu, L.X. Zhou, C.X. Xu: Numerical simulation of instaneous flow structure of swirling and non-swirling coaxial-jet particle-laden turbulence flows. 2010. Physica A: Statistical Mechanics and its Applications. Vol. 389. No. 23. pp.5380-5389.

DOI: 10.1016/j.physa.2010.08.014

Google Scholar

[24] R. Hreiz, C. Gentric, N. Midoux: Numerical investigation of swirling flow in cylindrical cyclones. 2011. Chemical engineering research and design. Vol. 89. No. 12. pp.2521-2539.

DOI: 10.1016/j.cherd.2011.05.001

Google Scholar

[25] A. Escue, J. Cui: Comparison of turbulence models in simulating swirling pipe flows. 2010. Applied Mathematical Modelling. Vol. 34, Iss. 10. pp.2840-2849.

DOI: 10.1016/j.apm.2009.12.018

Google Scholar

[26] M.A. Abdoh, I.M. Kolesnikov: Kinetics of allocation of water from a water black oil emulsion. 2006. Chemistry and Technology of Fuels and Oils. No. 6. pp.31-32.

Google Scholar

[27] B. Pardowitz, U. Tapken, R. Sorge, P.U. Thamsen, L. Enghardt: Rotating Instability in an Annular Cascade: Detailed Analysis of the Instationary Flow Phenomena. 2013. Journal of Turbomachinery. Vol. 136. Iss. 6, p.061017.

DOI: 10.1115/gt2013-95820

Google Scholar

[28] L.O. Diehl, D.P. Morales, F.G. Antes, J.S.F. Pereira, J.N.G. Paniz, E.M.M. Flores, M.P. S De Fatima, R.C.L. Guimaraes: Separation of heavy crude oil emulsion using microwave radiation for further crude oil analysis. 2011. Separation science and technology. Vol. 46. No. 8. pp.1358-1364.

DOI: 10.1080/01496395.2011.560590

Google Scholar

[29] E.R. Binner, J.P. Robinson, S.W. Kingman, E.H. Lester. B.J. Azzopardi, G. Dimitrakis, J. Briggs: Separation of oil/water emulsion in continuous flow using microwave heating. 2013. Energy and fuels. Vol. 27. No. 6. pp.3173-3178.

DOI: 10.1021/ef400634n

Google Scholar