[1]
A. Eliezer, E. M. Gutman, E. Abramov and E. Aghion: Corrosion Fatigue and Mechanochemical Behavior of Magnesium Alloys, Corrosion Review, 26, n. 1-2 (1997)126.
DOI: 10.1515/corrrev.1998.16.1-2.1
Google Scholar
[2]
P.L. Bonora, M. Andrei, A. Eliezer, E. M. Gutman: Mechanochemical Effect on MgAlloys by Impedance Measuements. Journal of Materials Science Letters, 20, no. 14 (2000) pp.1349-1351.
DOI: 10.1023/a:1010923206567
Google Scholar
[3]
R.M. Wang, A. Eliezer, E. M. Gutman: Microstructures and dislocations in the stressed AZ91D magnesium alloys. Materials Science and Engineering A 344(2002) 279-287.
DOI: 10.1016/s0921-5093(02)00413-6
Google Scholar
[4]
Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005; 26(17): 3557-3563.
DOI: 10.1016/j.biomaterials.2004.09.049
Google Scholar
[5]
Witte et al. Biomaterials 2006, 27: 1013-8.
Google Scholar
[6]
Witte F, Goede F, Fischer J, Crostack HA, Nellesen J, Beckmann F et al. Degradable Magnesium Implants Enhance Early Cartilage Repair by Accelerated Subchondral Bone Regeneration. ORS-Transactions 2005; 30: 1346.
Google Scholar
[7]
Sousa SR, Barbosa MA. Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins. Clinical Materials 1993; 14(4): 287-294.
DOI: 10.1016/0267-6605(93)90015-y
Google Scholar
[8]
Pourbaix M. Electrochemical corrosion of metallic biomaterials. Biomaterials 1984; 5(3): 122-134.
DOI: 10.1016/0142-9612(84)90046-2
Google Scholar
[9]
Williams DF. Review Tissue-biomaterial interactions. J Mater Sci 1987; 22: 3421-3445.
Google Scholar