A Probabilistic Load Flow Method Based on Markov Chain Wind Power Prediction

Article Preview

Abstract:

With the wind power installed capacity increased, it brings great challenges to the stable operation of the power grid. In order to take consideration of the wind power impact, this paper proposes a wind power variability model applied to the probabilistic load flow calculation using the method of combined cumulants and improved Von-Mises Expansion. This wind power variability model combines the concept of Markov chain process and scenario tree theory, taking in to account the relationships of the outputs of wind turbines at adjacent moment by considering the coupling interaction at different time intervals. Computer simulations verify the effectiveness and applicability of the proposed method through IEEE bus-39 New England case study.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 953-954)

Pages:

561-564

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Allan R N, Borkowska B, Grigg C H. Probabilistic analysis of power flows[J]. Electrical Engineers, Proceedings of the Institution of, 1974, 121(12): 1551-1556.

DOI: 10.1049/piee.1974.0320

Google Scholar

[2] Dopazo J F, Klitin O A, Sasson A M. Stochastic load flows[J]. Power Apparatus and Systems, IEEE Transactions on, 1975, 94(2): 299-309.

DOI: 10.1109/t-pas.1975.31855

Google Scholar

[3] Allan R N, Leite da Silva A M, Burchett R C. Evaluation methods and accuracy in probabilistic load flow solutions[J]. power apparatus and systems, IEEE transactions on, 1981 (5): 2539-2546.

DOI: 10.1109/tpas.1981.316721

Google Scholar

[4] Zhang P, Lee S T. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion[J]. Power Systems, IEEE Transactions on, 2004, 19(1): 676-682.

DOI: 10.1109/tpwrs.2003.818743

Google Scholar

[5] Su C L. Probabilistic load-flow computation using point estimate method[J]. Power Systems, IEEE Transactions on, 2005, 20(4): 1843-1851.

DOI: 10.1109/tpwrs.2005.857921

Google Scholar

[6] Ai X, Wen J, Wu T, et al. A discrete point estimate method for probabilistic load flow based on the measured data of wind power[C]/Industry Applications Society Annual Meeting (IAS), 2012 IEEE. IEEE, 2012: 1-7.

DOI: 10.1109/ias.2012.6373999

Google Scholar

[7] Liu Y, Zhang B, Wang J, et al. Static security analysis of smart grid adapting to new energy supply injection[C]/Power System Technology (POWERCON), 2010 International Conference on. IEEE, 2010: 1-6.

DOI: 10.1109/powercon.2010.5666402

Google Scholar

[8] Tian W D, Sutanto D, Lee Y B, et al. Cumulant based probabilistic power system simulation using Laguerre polynomials[J]. IEEE Transactions on Energy Conversion, 1989, 4(4): 567-574.

DOI: 10.1109/60.41715

Google Scholar

[9] Sanabria L A, Dillon T S. Stochastic power flow using cumulants and Von Mises functions[J]. International Journal of Electrical Power & Energy Systems, 1986, 8(1): 47-60.

DOI: 10.1016/0142-0615(86)90025-6

Google Scholar

[10] Jangamshetti S. H., Rau V. G. Site matching of wind turbine generators: a case study[J]. IEEE Transactions on Energy Conversion, 1999, 14(4): 1537-1543.

DOI: 10.1109/60.815102

Google Scholar

[11] Jangamshetti S. H., Ran V. G. Optimum siting of wind turbine generators[J]. IEEE Transactions on Energy Conversion, 2001, 16(1): 8-13.

DOI: 10.1109/60.911396

Google Scholar

[12] Celik A N. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey[J]. Renewable energy, 2004, 29(4): 593-604.

DOI: 10.1016/j.renene.2003.07.002

Google Scholar

[13] Mur-Amada J, Bayod-Rujula A A. Wind power variability model Part II-Probabilistic power flow[C]/Electrical Power Quality and Utilisation, 2007. EPQU 2007. 9th International Conference on. IEEE, 2007: 1-6.

DOI: 10.1109/epqu.2007.4424139

Google Scholar

[14] Balzter H. Markov chain models for vegetation dynamics[J]. Ecological Modelling, 2000, 126(2): 139-154.

DOI: 10.1016/s0304-3800(00)00262-3

Google Scholar

[15] Lopes V V, Scholz T, Estanqueiro A, et al. On the use of Markov chain models for the analysis of wind power time-series[C]/Environment and Electrical Engineering (EEEIC), 2012 11th International Conference on. IEEE, 2012: 770-775.

DOI: 10.1109/eeeic.2012.6221479

Google Scholar

[16] Matar H C. Analytical modelling and representation of wind energy resources[C]/Renewable Energies for Developing Countries (REDEC), 2012 International Conference on. IEEE, 2012: 1-10.

DOI: 10.1109/redec.2012.6416690

Google Scholar

[17] Peiyuan Chen, Kasper Klitgaard Berthelsen, Birgitte Bak-Jensen, Zhe Chen. Markov Model of Wind Power Time Series Using Bayesian Inference of Transition Matrix". Industrial Electronics, 2009. IECON , 09. 35th Annual Conference of IEEE , (2009).

DOI: 10.1109/iecon.2009.5414993

Google Scholar

[18] Usaola J. Probabilistic load flow with correlated wind power injections[J]. Electric Power Systems Research, 2010, 80(5): 528-536.

DOI: 10.1016/j.epsr.2009.10.023

Google Scholar

[19] Liu Y, Zhang B, Wang J, et al. Static security analysis of smart grid adapting to new energy supply injection[C]/Power System Technology (POWERCON), 2010 International Conference on. IEEE, 2010: 1-6.

DOI: 10.1109/powercon.2010.5666402

Google Scholar