[1]
Peng K, Li X, Luo C, Shen Z. Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China. J Environ Sci Health A Tox Hazard Subst Environ Eng 2006; 41: 65-76.
DOI: 10.1080/10934520500298838
Google Scholar
[2]
Tordoff GM, Baker AJM, Willis AJ. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 2000; 41: 219-28.
DOI: 10.1016/s0045-6535(99)00414-2
Google Scholar
[3]
Wang C, Shen Z, Li X, Luo C, Chen Y, Yang H. Heavy metal contamination of agricultural soils and stream sediments near a copper mine in Tongling, People's Republic of China. Bulletin of Environmental Contamination and Toxicology 2004; 73: 862-9.
DOI: 10.1007/s00128-004-0506-x
Google Scholar
[4]
Brewster MD, Passmore RJ. Use of Electrochemical Iron Generation for Removing Heavy-Metals from Contaminated Groundwater. Environmental Progress 1994; 13: 143-8.
DOI: 10.1002/ep.670130221
Google Scholar
[5]
Tokunaga S, Hakuta T. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 2002; 46: 31-8.
DOI: 10.1016/s0045-6535(01)00094-7
Google Scholar
[6]
Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment 2002; 284: 27-35.
DOI: 10.1016/s0048-9697(01)00854-3
Google Scholar
[7]
Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D, Senecoff JF, et al. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nature Biotechnology 2002; 20: 1140-5.
DOI: 10.1038/nbt747
Google Scholar
[8]
Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology 2001; 60: 193-207.
DOI: 10.1016/s0013-7952(00)00101-0
Google Scholar
[9]
Jang M, Hwang JS, Choi SI, Park JK. Remediation of arsenic-contaminated soils and washing effluents. Chemosphere 2005; 60: 344-54.
DOI: 10.1016/j.chemosphere.2004.12.018
Google Scholar
[10]
Giacomino A, Malandrino M, Abollino O, Velayutham M, Chinnathangavel T, Mentasti E. An approach for arsenic in a contaminated soil: Speciation, fractionation, extraction and effluent decontamination. Environmental Pollution 2010; 158: 416-23.
DOI: 10.1016/j.envpol.2009.08.010
Google Scholar
[11]
Voglar D, Lestan D. Electrochemical separation and reuse of EDTA after extraction of Cu contaminated soil. Journal of Hazardous Materials 2010; 180: 152-7.
DOI: 10.1016/j.jhazmat.2010.04.007
Google Scholar
[12]
Tunay O, Kabdasli NI. Hydroxide Precipitation of Complexed Metals. Water Research 1994; 28: 2117-24.
Google Scholar
[13]
Jiraroj D, Unob F, Hagege A. Degradation of Pb-EDTA complex by a H2O2/UV process. Water Research 2006; 40: 107-12.
DOI: 10.1016/j.watres.2005.10.041
Google Scholar
[14]
Jung J, Yang JS, Kim SH, Yang JW. Feasibility of micellar-enhanced ultrafiltration (MEUF) for the heavy metal removal in soil washing effluent. Desalination 2008; 222: 202-11.
DOI: 10.1016/j.desal.2007.01.154
Google Scholar
[15]
Reichle WT. Synthesis of Anionic Clay-Minerals (Mixed Metal-Hydroxides, Hydrotalcite). Solid State Ionics 1986; 22: 135-41.
DOI: 10.1016/0167-2738(86)90067-6
Google Scholar
[16]
Wang SL, Liu CH, Wang MK, Chuang YH, Chiang PN. Arsenate adsorption by Mg/Al-NO3 layered double hydroxides with varying the Mg/Al ratio. Applied Clay Science 2009; 43: 79-85.
DOI: 10.1016/j.clay.2008.07.005
Google Scholar
[17]
Jiang JQ. Removing arsenic from groundwater for the developing world - a review. Water Science and Technology 2001; 44: 89-98.
DOI: 10.2166/wst.2001.0348
Google Scholar
[18]
Bissen M, Frimmel FH. Arsenic - a review. Part II: Oxidation of arsenic and its removal in water treatment. Acta Hydrochimica Et Hydrobiologica 2003; 31: 97-107.
DOI: 10.1002/aheh.200300485
Google Scholar
[19]
Grafe M, Eick MJ, Grossl PR, Saunders AM. Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. Journal of Environmental Quality 2002; 31: 1115-23.
DOI: 10.2134/jeq2002.1115
Google Scholar
[20]
Shi R, Jia YF, Wang CZ, Yao SH. Mechanism of arsenate mobilization from goethite by aliphatic carboxylic acid. Journal of Hazardous Materials 2009; 163: 1129-33.
DOI: 10.1016/j.jhazmat.2008.07.068
Google Scholar
[21]
Zeng M, Liao BH, Lei M, Zhang Y, Zeng QR, Ouyang B. Arsenic removal from contaminated soil using phosphoric acid and phosphate. Journal of Environmental Sciences-China 2008; 20: 75-9.
DOI: 10.1016/s1001-0742(08)60011-x
Google Scholar
[22]
Alam MGM, Tokunaga S, Maekawa T. Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere 2001; 43: 1035-41.
DOI: 10.1016/s0045-6535(00)00205-8
Google Scholar
[23]
Titulaer MK, Jansen JBH, Geus JW. The Quantity of Reduced Nickel in Synthetic Takovite - Effects of Preparation Conditions and Calcination Temperature. Clays and Clay Minerals 1994; 42: 249-58.
DOI: 10.1346/ccmn.1994.0420303
Google Scholar