The Application of Response Surface Methodology for Adsorption Optimization of Lead (II) onto Phosphogypusum

Article Preview

Abstract:

Using the phosphogypsum as adsorbent prepared from microwave modified for the removal of lead ions from aqueous solution has been investigated under optimized conditions in this study. Influences of parameters like adsorbent dose 0.5-1.5g/100mL, initial concentration of ions 20–60 mg/L , pH 5.0–7.0 and temperature 20–30°C on Pb ions adsorption were also examined, using Box-Behnken design matrix. Very high regression coefficient between the variables and the response indicates excellent evaluation of experimental data by second order polynomial regression model. The response surface method indicated that adsorbent dose 1.0g/100mL, initial concentration of ions 40mg/L , pH 7.0 and temperature 20°C were optimal for adsorption of Pb ions .

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

2026-2031

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Wang, T. Terdkiatburana, M.O. Tadé, Single and co-adsorption of heavy metals and humic acid on fly ash, Separation and Purification Technology, 58 (2008) 353-358.

DOI: 10.1016/j.seppur.2007.05.009

Google Scholar

[2] P.S.M.S. Marisa Nascimento , Vicente Paulo de Souza, Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method, Fuel, 88 (2009) 1714-1719.

DOI: 10.1016/j.fuel.2009.01.007

Google Scholar

[3] S. Mohan, R. Gandhimathi, Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent, J Hazard Mater, 169 (2009) 351-359.

DOI: 10.1016/j.jhazmat.2009.03.104

Google Scholar

[4] A. Özer, G. Gürbüz, A. Çalimli, B.K. Körbahti, Biosorption of copper(II) ions on Enteromorpha prolifera: Application of response surface methodology (RSM), Chemical Engineering Journal, 146 (2009) 377-387.

DOI: 10.1016/j.cej.2008.06.041

Google Scholar

[5] A.D. Papandreou, C.J. Stournaras, D. Panias, I. Paspaliaris, Adsorption of Pb(II), Zn(II) and Cr(III) on coal fly ash porous pellets, Minerals Engineering, 24 (2011) 1495-1501.

DOI: 10.1016/j.mineng.2011.07.016

Google Scholar

[6] M. Momčilović, M. Purenović, A. Bojić, A. Zarubica, M. Ranđelović, Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon, Desalination, 276 (2011) 53-59.

DOI: 10.1016/j.desal.2011.03.013

Google Scholar

[7] H. Tayibi, M. Choura, F.A. Lopez, F.J. Alguacil, A. Lopez-Delgado, Environmental impact and management of phosphogypsum, Journal of environmental management, 90 (2009) 2377-2386.

DOI: 10.1016/j.jenvman.2009.03.007

Google Scholar

[8] X. -j. Hu, J. -s. Wang, Y. -g. Liu, X. Li, G. -m. Zeng, Z. -l. Bao, X. -x. Zeng, A. -w. Chen, F. Long, Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics, Journal of Hazardous Materials, 185 (2011).

DOI: 10.1016/j.jhazmat.2010.09.034

Google Scholar

[9] S. Saadat, A. Karimi-Jashni, Optimization of Pb(II) adsorption onto modified walnut shells using factorial design and simplex methodologies, Chemical Engineering Journal, 173 (2011) 743-749.

DOI: 10.1016/j.cej.2011.08.042

Google Scholar

[10] J. Li, S. Chen, G. Sheng, J. Hu, X. Tan, X. Wang, Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes, Chemical Engineering Journal, 166 (2011) 551-558.

DOI: 10.1016/j.cej.2010.11.018

Google Scholar

[11] G.J. Copello, L.E. Diaz, V. Campo Dall' Orto, Adsorption of Cd(II) and Pb(II) onto a one step-synthesized polyampholyte: Kinetics and equilibrium studies, Journal of Hazardous Materials, 217-218 (2012) 374-381.

DOI: 10.1016/j.jhazmat.2012.03.045

Google Scholar