[2]
Rodney Truce, John Wilkins, Li Dingfu, et al. Reduce Fine Particle and Mercury Emission by Using the Indigo Agglomerator[C]. Proceedings of 12th Conference of ESP, 2007: 321-328(In Chinese).
Google Scholar
[3]
Rodney Truce, Robert Crynack, John Wilkins, et al. The Indio Agglomerator: A Proven Technology for Reducing Visible Emissions From Electrostatic Precipitators[C]. Proceedings of 11th Conference of ESP, 2005: 244-252(In Chinese).
Google Scholar
[4]
Manyin Hu, Guang Han, Zhong Liu, et al. Numerical Simulation for the Flow Field of the Coagulation Device for Ultrafine Particles[C]. Proceedings of 15th Conference of ESP, 2013: 40-43(In Chinese).
Google Scholar
[5]
Zhong Liu, Hanxiao Liu, Xinxin Feng, et al. Comparative Study on the Different Coalescence Models of Ultranfine Particles[J]. Journal of Combustion Science and Technology, 2012, 18(3): 212-216(In Chinese).
Google Scholar
[6]
Zhong Liu, Hanxiao Liu, Xinxin Feng, et al. Simulation for the Flow Field of the Turbulence Coalescence Device and the Trajectory of Particles[J]. Proceedings of the CSEE, 2012, 32(14): 71-75(In Chinese).
Google Scholar
[7]
Hanxiao Liu, Jianguo Li, Yuping Yao, et al. The Influence of the Flow Field in Coalescer Device with Different Column Arrangement[C]. The 15th Annual Meeting of CAST, 2013(In Chinese).
Google Scholar
[8]
Feng Guo, Sunwei Chen, Hanxiao Liu, et al. Simulation for the Flow Field of Cylindrical Pipe with Different Shape[C]. Proceedings of 15th Conference of ESP, 2013: 171-174(In Chinese).
Google Scholar
[9]
Shengqing Zhao, Hanxiao Liu. Simulation for the Flow Field of Cylindrical Pipes Connected in Parallel with Different Distance[C]. Proceedings of 15th Conference of ESP, 2013: 175-178(In Chinese).
Google Scholar
Smoluchowski M. Versuch einer Mathematischen Theorie der Koagulations kinetik kolloider Lösungen[J]. Zeitschrift fur Physikalische Chemie (Leipzig), 1917, 92: 124-168.
DOI: 10.1515/zpch-1918-9209
Google Scholar
[1]
Linjun Yang. Pollutant Control Technologies for Fine Particles in Coal-fired Power Station[M]. Beijing: Chemical Industry Press, (2011).
Google Scholar
[2]
Saffman, P.G. ,Turner, J.S. On the Collision of Drops in Turbulent Clouds[J]. Journal of Fluid Mechanics, 1965, 1: 16-30.
Google Scholar
[3]
K. Higashitani, K. Yamauchi, Y. Matsuno, and G. Hosokawa. Turbulent Coagulation of Particles Dispersed in a Viscous Fluid. Chemical Engineering Journal Japan. 1983, 16(4): 299-304.
DOI: 10.1252/jcej.16.299
Google Scholar
[4]
Abrahamson J. Collision Rates of Small Particles in A Vigorously Turbulent Fluid[J], Chemical Engineering Science, 1975, 30(11): 1371-1379.
DOI: 10.1016/0009-2509(75)85067-6
Google Scholar
[5]
Haibo Zhao, Chuguang Zheng. Dynamic Evolution of Population Balance Modeling in Dispersed System[M]. Beijing: Science Press, (2008).
Google Scholar
[6]
Zaichik L I, Solov'ev A L. Collision and Coagulation Nuclei under Conditions of Brownian and Turbulent Motion of Aerosol Particle. High Temperature,2002,40(3): 460-465.
Google Scholar