Study on the Ozone Treatment of Night-Soil Sewage

Article Preview

Abstract:

Night-soil pollution is a serious environmental and public health problem in highly populated and developing countries. Static and dynamic experiments were carried out to study the chroma and COD removal effect of night-soil sewage by ozone oxidation technique. The results show that, both the chroma and COD of night-soil sewage decrease with the growth of ozone dosage, and the chroma removal rate can be up to 90%, while the COD removal rate is less than 50%. The utilization efficiency of ozone decreases with the chroma reduction or the reactor diameter increasing. The appropriate diameter of ozonization reactor used in eco-friendly toilets is 150mm, and the optimal ozone dosage is 400mg/L.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

2554-2558

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.R. Giri, J. Takeuchi and H. Ozaki: Ecol. Eng. Vol. 25 (2005), pp.395-404.

Google Scholar

[2] U. Stoll and K. Parameswaran: Water Sci. Technol. Vol. 34 (1996), pp.209-217.

Google Scholar

[3] A.M. Stephen, and J.H. Cummings: J. Med. Microbiol. Vol. 13 (1980), pp.45-56.

Google Scholar

[4] R.K. Dhaked, C.K. Waghmare, S.I. Alam, D.V. Kamboj and L. Singh: Bioresour. Technol. Vol. 87 (2003), pp.299-303.

Google Scholar

[5] B. Ling, T.X. Den, Z.P. Lu, L.W. Min, Z.X. Wang and A.X. Yuan: Wld. Hlth. Forum Vol. 14 (1993), pp.67-70.

Google Scholar

[6] L.A. Pradt: Water Res. Vol. 5 (1971), pp.507-521.

Google Scholar

[7] R.K. Dhaked, K.V. Ramana1, A. Tomar, C. Waghmare, D.V. Kamboj and L. Singh: Anaerobe Vol. 11 (2005), pp.217-224.

DOI: 10.1016/j.anaerobe.2005.01.003

Google Scholar

[8] D.P. Kunte, T.Y. Yeole and D.R. Ranade: Biores. Technol. Vol. 75 (2000), pp.149-151.

Google Scholar

[9] M. Sai Ram, L. Singh and S.I. Alam: Biores. Technol. Vol. 45 (1993), pp.229-232.

Google Scholar

[10] J. Hoigné and H. Bader: Water Res. Vol. 17 (1983), pp.173-183.

Google Scholar

[11] J. Hoigné and H. Bader: Water Res. Vol. 17 (1983), pp.185-194.

Google Scholar

[12] W.R. Haag and C.C.D. Yao: Environ. Sci. Technol. Vol. 26 (1992), pp.1005-1013.

Google Scholar

[13] K.L. Rakness, K.M. Corsaro, G. Hale and B.D. Blank: Ozone Sci. Eng. Vol. 15 (1993), pp.497-514.

Google Scholar

[14] M.L. Janex, P.M. Savoye, Z. Roustan Do-Quang, J.M. Laine and V. Lazarova: Ozone Sci. Eng. Vol. 22 (2000), pp.113-121.

DOI: 10.1080/01919510008547215

Google Scholar

[15] M. Weemaes, H. Grootaerd, F. Simoens, A. Huymans and W. Verstraete: Water Sci. Technol. Vol. 42 (2000), pp.175-178.

Google Scholar

[16] R. Goel, T. Tokutomi, H. Yasui and T. Naike: Water Sci. Technol. Vol. 48 (2003), pp.85-96.

Google Scholar

[17] R.Y. Peng and H.J. Fan: Dyes Pigment. Vol. 67 (2005), pp.153-159.

Google Scholar

[18] A. Lopez-Lopez, J.S. Pic and H. Debellefontaine: Chemosphere Vol. 66 (2007), pp.2120-2126.

Google Scholar

[19] U. von Gunten: Wat. Res. Vol. 37 (2003), pp.1443-1467.

Google Scholar

[20] P.C. Sangave, P.R. Gogate and A.B. Pandit: Chemosphere Vol. 68 (2007), pp.32-41.

Google Scholar

[21] A.H. Konsowa: Desalination Vol. 158 (2003), pp.233-240.

Google Scholar

[22] S.A. Tyrrell, S.R. Rippey and W.D. Watkins: Wat. Res. Vol. 29 (1995), pp.2483-2490.

Google Scholar