Adsorption of Cu(II) and Zn(II) Ions by Solidified Landfilled Sludge and its Pyrolyzed Produce

Article Preview

Abstract:

In this study, using solidified landfilled sludge (SLS) and its pyrolyzed produce (PSLS) as adsorbents, adsorption characteristics of Cu2+ and Zn2+ onto SLS and PSLS was investigated. These results revealed that PSLS had more irregular pores and its surface roughness increased, and the surface area of PSLS was twice than that of SLS. Adsorption studies showed that adsorption capacity of Cu2+ and Zn2+ increased with the increasing dosage of adsorbents, and the adsorption process of Cu2+ and Zn2+ onto SLS or PSLS could be divided into the first rapid step and the second slower step. Based on Langmuir equation, the maximum limiting adsorption capacities of Cu2+ and Zn2+ onto PSLS was much higher that onto SLS. Moreover, FTIR analysis showed that the adsorption of Cu2+ and Zn2+ on SLS depended on active functional group such as hydroxy aldehydes while that relied on the groups such as C=C bond of aromatic rings, Si-O-Si or Si-O-C structures for PSLS.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

2629-2634

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.S. Wan Ngah, M.A.K.M. Hanafiah: Bioresour. Technol. Vol. 99 (2008), pp.3935-3948.

Google Scholar

[2] S. Veli and B. Alyüz: J. Hazard. Mater. Vol. 149 (2007), pp.226-233.

Google Scholar

[3] O.S. Amuda and I.A. Amoo: J. Hazard. Mater. Vol. 141 (2007), pp.778-783.

Google Scholar

[4] F.L. Fu, L.P. Xie, B. Tang, Q. Wang and S. X: Chem. Eng. J. Vol. 189-190 (2012), pp.283-287.

Google Scholar

[5] V.K. Verma, S. Tewari and J.P.N. Rai: Bioresour. Technol. 2008, 99(6), p.1932-(1938).

Google Scholar

[6] Y.C. Lai, W.J. Lee and K.L. Huang: J. Hazard. Mater. Vol. 154 (2008), pp.588-594.

Google Scholar

[7] C. Blöcher, J. Dorda, V. Mavrov, H. Chmiel, N.K. Lazaridis and K.A. Matis: Water Research, Vol. 37 (2003), pp.4018-4026.

DOI: 10.1016/s0043-1354(03)00314-2

Google Scholar

[8] K. Vijayaraghavan and Y.S. Yun: Biotechnol. Adv. Vol. 26 (2008), pp.266-291.

Google Scholar

[9] A. Üçer, A. Uyanik and Ş.F. Aygün: Sep. Purif. Technol. Vol. 47 (2006), pp.113-118.

Google Scholar

[10] W.S. Wan Ngah, L.C. Teong and M.A.K.M. Hanafiah: Carbohydr. Polym. Vol. 83 (2011), pp.1446-1456.

Google Scholar

[11] A. Saeed, M. Iqbal and W. Akhtar: J. Hazard. Mater. Vol. 117 (2005), pp.65-73.

Google Scholar

[12] N. Meunier, J. Laroulandie, J.F. Blais and R.D. Tyagi: Bioresour. Technol. Vol. 90 (2003), pp.255-263.

Google Scholar

[13] A.F. Martins, Ade L. Cardoso, J.A. Stahl and J. Diniz: Bioresour. Technol. Vol. 98 (2007), pp.1095-1100.

Google Scholar

[14] X.J. Wang, X.M. Xu, X. Liang, Y. Wang, M. Liu, X. Wang, S.Q. Xia, J.F. Zhao, D.Q. Yin and Y.L. Zhang: Desalin. Vol. 278 (2011), pp.231-237.

Google Scholar

[15] A. Saeed, M.W. Akhter and M. Iqbal: Sep. Purif. Technol. Vol. 45 (2005), pp.25-31.

Google Scholar

[16] H. Merrikhpour and M. Jalali: Clean Technol. Environ. Policy Vol. 14 (2012), pp.845-855.

Google Scholar

[17] O. Duggan and S.J. Allen: Wat. Sci. Teeh. Vol. 35 (1997), pp.21-27.

Google Scholar

[18] C.P. Yang, J.Q. Wang, M. Lei, G.X. Xie, G.M. Zeng and S.L. Luo: J. Environ. Sci. Vol. 22 (2010), pp.675-680.

Google Scholar

[19] C. Jindarom, V. Meeyoo, B. Kitiyanan, T. Rirksomboona and P. Rangsunvigit: Chem. Eng. J. Vol. 133 (2007), pp.239-246.

Google Scholar

[20] D.J. Li, Y.S. Wu, L. Feng and L.Q. Zhang: Bioresour. Technol. Vol. 113 (2012), pp.121-126.

Google Scholar

[21] W.Q. Zhu, Z. Zhang, Z.W. Jia, L. Liao, D. Guo and Y.C. Zhao: Environ. Sci. Vol. 37 (2010), pp.1575-1582.

Google Scholar

[22] Z.M. Gu and X.R. Wang: Chin. J. Anal. Chem. Vol. 28 (2000), pp.314-317.

Google Scholar